ADTs

structure Stack :> sig
type 'a stack
val create: 'a stack
val isEmpty: 'a stack -> bool
val push: 'a -> 'a stack -> 'a stack

end = struct... end
* ADT: hidden representation

® Only access through (implementor-provided)
operations



"Exposed” ADTs

(define empty-stack '())
(define (empty? a-stack) (equal? a-stack '()))
(define (push v a-stack) (cons v a-stack))

* Client can access representation.
®* Only "politeness" prevents this.
* Still useful to organize thinking, make intentions

manifest



ADT design process

°* ldentify abstractions
°* |dentify operations on abstractions

* Key addition of OO: inheritance...



OOP design process

°* ldentify abstractions
°* |dentify operations on abstractions
®* Factor into subclass/superclass relationships
® Common operations across many classes
-> make into superclasses, inherit

®* Factoring is ongoing, iterative process

®* Good OO programmers constantly refactor

®* Frameworks: libraries that "pre-factor”
functionality needed by many clients in a given
application domain



When to inherit?

®* Inheritance to express kind-of relationships
® An IconButton is a kind of a Button.
®* Common interface

*Inheritance to reuse code/implementation
® Stack might inherit from Array
® Less desirable than organizing for interfaces
® For long run reuse, factor for interfaces, not
implementation.
® Otherwise, may later find that interface is not
exactly suitable.



Concrete vs. abstract

®* Concrete class:
® Intended to be instantiated, used directly

* Abstract class:

® Intended to provide common interface or
implementation for subclasses

® Do not instantiate directly

® In statically typed languages, typically declare
abstractness explicitly

® In Smalltalk, define methods that send

self subclassResponsibility



Leaf vs. interior

®* Rule of thumb: only "leaf" classes should be
concrete
®j.e., do notinherit from concrete classes
® Often later discover that concrete class is not
exactly what one wants; but you can't alter it,
because the instances depend on behavior
® Instead, create abstract class and inherit from that
® E.g., do not inherit FancylconButton directly from
IconButton; instead, define AbstractlconButton
and inherit both lconButton and FancylconButton
from that.



Factoring exercise: collections

Array at:, at:put:, first, last

String at:, at:put:, from:to:, first, last
Set put:

Bag put:, count:

Dictionary at:put:

Interval from:to:

LinkedList head, tail, at:, at:put:, first, last
DoublyLinkedList

head, tail, at:, at:put:, first, last
all collections:
do:, contains:, any:ifAbsent:, filter:



Whatis a framework?

* A: A library that
® Provides functionality for writing applications in a
particular domain
® |s designed to be extended by the client (in the

OO world, usually by subclassing some
framework class)



Framework examples

®* Graphical user interface (GUI)

®* Domain-specific functionality: drawing, widgets
(buttons, input fields, etc.), input event loop

® Hook for client extension: user might subclass
Button and override mouseDown method, draw
method, etc.



Framework examples

* Web application servers

®* Domain-specific functionality: network
connections, request parsing, database queries

® Hooks for client extension:
® defines abstract RequestHandler class, with
®* handleRequest method (default sends empty
reply) that is overridden by client.



Framework examples

®* Unit testing

®* Domain-specific functionality: for sending
messages to an object, capturing return values,
comparing to expected return value, and
recording/presenting results

® Hook for user extension: TestCase class with
runTest method (default does nothing; user
subclasses, and overrides to run tests).



