CSE 341:
Programming Languages

Dan Grossman
Spring 2004
Lecture 17— Closure Conversion

-

Dan Grossman CSE341 Spring 2004, Lecture 17



ﬂl’oday

e Some terminology and motivation for language translation
e The closure-conversion source-to-source translation
e Some specifics for your homework
Why learn closure conversion:
e Help reason about functional programs

e Explicit closure construction is an idiom in languages without

first-class functions

e A great example of source-to-source transformation

-

Dan Grossman CSE341 Spring 2004, Lecture 17 2



/I_anguage Translation

One way to implement a language is to translate it to another
language (that presumably has an implementation).

Equivalence is, of course, key.

In translation, there are 3 languages involved (source, target,
translation-implementation (a.k.a. meta))

If source-language = target-language, called a source-to-source
translation. If result is a subset, it can simplify the implementation.

HWSA5:
e source-language = target-language = “minfun”

e meta-language = Scheme

e target has no functions with free variables

-

Dan Grossman CSE341 Spring 2004, Lecture 17 3



/Embedded Language \

To add a bit more confusion:

e “minfun” abstract-syntax is written with Scheme expressions
(using a bunch of define-struct definitions)

e the implementation for the target is written in Scheme (a function
called evaluate)

But we saw this in HW3 too: We embedded the “propositional logic”
language in ML and implemented it with an ML function (called eval)

One new twist because I'm nice:

e There's also a Scheme function parse for converting “minfun”
concrete syntax to “minfun” abstract syntax.

e But this is just for writing tests; closure-conversion operates on

\\ abstract syntax (using make- and selector functions). /

Dan Grossman CSE341 Spring 2004, Lecture 17 4



/Closure Conversion \

For any program, we need an equivalent program where any function

body accesses data only through its parameters.
So (fun (x) (fun (y) (+ x y)) is no good.

Key idea: Change the program to keep track of environments itself,
rather than relying on the implementation.

(This is roughly what compilers for functional languages do.)

- /

Dan Grossman CSE341 Spring 2004, Lecture 17 5




ﬂl’he key ideas \

This is the rough idea for (fun (x) (fun (y) (+ x y))).

1. Have code take an extra argument.

e (fun (y) e) becomes (fun (env y) e’)

2. Translate functions to pairs of code and environment.

e (fun (y) e) becomes (pr (fun (env y) e’) 1lst) where
1st is a list of the variables in scope (where the function is
defined).

3. Free-variables become environment-access expressions.

e e becomes (+ (fst env) y).

4. Function application must pass environment (next page)

- /

Dan Grossman CSE341 Spring 2004, Lecture 17 6




/Function Application \

Given (app el e2), el will be translated to a pair of code and

environment.

So we want something like (in pseudocode)

let closure = el
let arg = e2
((#1 closure) (#2 closure) arg)

But we don't have let, so you have to do this with a new function of

two arguments (no big deal).

In other words, we extract the code and pass it the environment and

the “real” argument.

- /

Dan Grossman CSE341 Spring 2004, Lecture 17 7




/Arbitrary Depth \

When we are translating a program and we reach a function or

free-variable, we may already be inside any number of outer functions.

For variables:

e We need an ordered list (a stack) of free variables and the
environment-variable for the result, so we can create an expression
that, at run-time, gets the right element from the list.

e \We also need the local variable(s) so we don't do anything to
them.

For functions, we build a pair:

e The pair's environment is a list made out of the local variable(s)
added to the (outer) environment-variable for the result.

e The pair's code is a function with one more argument and the
\\ body translated (with appropriate free-variable stack, etc.) /

Dan Grossman CSE341 Spring 2004, Lecture 17 8



/Everything Else and Fresh Variables \

For all the other cases, just recursively convert.

Homework complicated slightly by “what if you're not in a function”.

The fun and app cases require us to make up new variable names.
e They better not shadow or get shadowed.

e Scheme has a primitive gensym that is just what we need.

— Every time you evaluate (gensym) you get a symbol that has

never been used before.
— Example: make an increment function with a fresh name:

(let ([x (gensym)])
(make-fun (list x) (add x 1)))

- /

Dan Grossman CSE341 Spring 2004, Lecture 17 9




