
CSE 341, Spring 2004, Assignment 5
Due: Friday 14 May, 9:00AM

Last updated: 5 May

As discussed in class, you will implement closure-conversion and write some examples in minfun, a tiny
language created for this homework. Several key definitions are in hw5provided.scm. This assignment may
make little sense without notes from class. Warning: This assignment is difficult.

Concrete Syntax: The concrete syntax for minfun is the following:

num ::= <<any Scheme number>>
id ::= <<any Scheme symbol>>
e ::= num

| id
| (fun (id1 ... idn) e)
| (let id e1 e2)
| (app e1 e2 ... en)
| (if1 e1 e2 e3)
| (mul e1 e2)
| (add e1 e2)
| (is-eq e1 e2)
| (pr e1 e2)
| (fst e1)
| (snd e2)
| (set-fst! e1 e2)
| (set-snd! e1 e2)
| (is-pr e1)

To use concrete syntax to create a minfun program, put a ’ in front and pass it to the Scheme function
parse. For example, (parse ’(let x 5 (pr 3 x))). However, parse only accepts functions with one
argument (i.e., (fun (id) e)) and applications of one argument (i.e., (app e1 e2)). Remember to write
app, unlike in Scheme.

Abstract Syntax: The abstract syntax for minfun is defined by the define-struct definitions in
hw5provided.scm. Every field must be a minfun expression, with these exceptions:

• fun-args is a list of symbols (minfun identifiers)

• app-args is a list of minfun expressions

For the most part, the result of parsing is obvious. However, the parser desugars (let id e1 e2) to
(app (fun (id) e2) e1).

Semantics: The semantics for minfun is largely like Scheme. For example, variables are lexically scoped
and all constructs eagerly evaluate their arguments except if1. The primitives have this meaning:

• (if1 e1 e2 e3) evaluates e1. If the result is 1, it evaluates to e2, else it evaluates to e3. (We use 1
because we do not have booleans.)

• mul is multiplication and add is addition.

• is-eq must take two expressions that evaluate to numbers. It produces 1 if the numbers are the same,
else 0.

• The remaining primitives are exactly like corresponding primitives in Scheme: pr is like cons, fst is
like car, snd is like cdr, set-fst! is like set-car!, set-snd! is like set-cdr!, and is-pr is like
pair? (except it returns 1 or 0).

1



Encodings: Because minfun is so small, we must encode some common idioms:

• There is no special empty-list. By convention, minfun programmers (all 56 of them), use 99 for the
empty-list. For example, (pr 3 (pr 5 99)) is a list of length 2.

• There is no explicit recursion, but we can fake it with mutation. See hw5tests.scm for two examples.

Evaluation: The provided function evaluate is an almost-correct interpreter for minfun programs. It
even handles functions and applications with any number of arguments. However, it does not allow free
variables in functions, which is particularly problematic since the parser desugars let to functions. Therefore,
calling evaluate on the provided tests and most other examples will cause an error. You are not to change
the evaluate function.

Printing: To view results and help with debugging, the provided function to-sexp is useful. It’s roughly
the opposite of parsing. However, if its argument has a cycle, then it will go an infinite loop, so don’t call
it! Warning: evaluating programs that fake recursion with mutation can produce cycles.

Problems:

1. (Writing minfun programs) Hint: Sample solution is 14 lines

(a) Using parse, define a Scheme variable minfun-append that holds the abstract syntax for a minfun
function that appends two lists. In other words, write a Scheme expression of the form (define
minfun-append (parse ’(...))) for an appropriate ...

• You will have to use currying because parse requires one-argument functions.
• You will have to fake recursion with mutation.

(b) Using parse, define Scheme variables lst1 and lst2, each holding a minfun list. lst1 should
hold a list holding 1, 2, and 3 in that order. lst2 should hold a list holding 4 and 5 in that order.
Remember 99 “is” the empty-list.

(c) Without using parse, define a Scheme variable ans that holds a minfun program that applies
minfun-append to lst1 and lst2. You should build abstract syntax directly (by calling the
Scheme function make-app). This will give you a good third test (though of course you should
write more).

2. (Closure Conversion) Hint: Sample solution including helper functions is 70 lines

You must write a Scheme function convert that takes a minfun program (in abstract syntax) and
produces an equivalent minfun program (in abstract syntax). You may assume the input program has
no cycles (though running it may make cycles), has only one-argument functions, and has no undefined
variables. Your output must have no free variables (so you can call evaluate). You should write these
Scheme helper functions (you may write others):

(a) convert-body does the actual work (recursively). It takes 4 arguments:

• e, the minfun program to be converted
• arg, the argument name for the nearest enclosing function, or #f if e is not in any function.

Note that evaluate allows using this minfun variable.
• arg-stack, an ordered list of argument names for the enclosing functions, not including the

nearest enclosing function. So the first element of arg-stack is the name of the second
nearest function’s argument. The list is empty unless e is in at least two functions.

• env-var, the minfun variable name used in the result to access the environment of free
variables.

Hints:

• You need a case for every kind of minfun expression. Only 3 such cases are difficult.

2



• The case for variables should use get-env-exp, described below, unless the variable is the
same as arg. (You can compare minfun variables with Scheme’s eq?.)

• The case for functions should translate the function body using rather different arguments for
convert-body. Remember the result for the function case is a pair. In particular, we need a
new env-var; call the Scheme primitive (gensym) to get one.

• The case for applications should create a function of two arguments and apply this function
(because we do not have let). Use (gensym) to create fresh names for the parameters.

(b) get-env-exp does the actual work of converting a free variable into the correct environment-
access expression. It should take a minfun variable (the one being converted), an arg-stack (as
described above), and a minfun expression env-exp. When convert-body calls get-env-exp,
it will use its env-var for env-exp. If the minfun variable is the nth element of arg-stack,
then get-env-exp returns a minfun expression that, when evaluated, gets the nth element of the
environment in env-var. (However, there is no need to compute what n is.) You can call error
if the variable is not in arg-stack.

3. (Extra Credit) Write a second version of closure conversion (called convert2) that does not put
unused variables in function environments. That is, if x is in scope in the body of a function but
the function body does not actually have an occurrence of x, then the environment for the converted
function should not have a “slot” for x. Warning: The sample solution does not do the extra credit.

Turn-in Instructions

• Put all your solutions in one file, lastname hw5.scm, where lastname is replaced with your last name.

• Line 1 of your .scm file should include a Scheme comment with your name and the phrase homework
5.

• Email your solution to daverich@cs.washington.edu.

• The subject of your email should be exactly [cse341-hw5].

• Your .scm file should be an attachment.

3


