
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Fall 2004

Lecture 23— Advanced Issues in Smalltalk and Other Dynamically

Typed OO Languages

Dan Grossman CSE341 Fall 2004, Lecture 23 1



'

&

$

%

“Advanced Issues”

We have a purely-OO dynamically-typed, class-based language:

• We can send any message to any object

• Subclassing and dynamic dispatch allow shared and specialized

behavior.

This elegance leads to certain conveniences (good) and awkwardness

(bad)...

• convenience: classes-are-objects makes “factories” trivial

• awkwardness: class of a class of a class...

• awkwardness: “fragile” superclasses

• multiple inheritance (convenient and awkward)

• multimethods (convenient and awkward)

Dan Grossman CSE341 Fall 2004, Lecture 23 2



'

&

$

%

Motivating the “Factory Pattern”

Consider a Java method using a Windows GUI to do some stuff:

void doStuff() {

Frame f = new WindowsFrame(); // a subclass of Frame

f.addButton(...);

f.displayMessage(...);

...

}

And of course we have 100s of methods that build GUI objects in this

way.

And now we want to be platform-independent (support Linux and

Mac, which use different subclasses for each kind of GUI thing).

Dan Grossman CSE341 Fall 2004, Lecture 23 3



'

&

$

%

What can we do?

Options:

• Duplicate 100s of methods

• Pass a “platform” flag everywhere and use if-statements

• Like previous but put flag in a global scope

• Like previous but abstract if-statements to helper methods

Even with helper methods, the if-statements are very un-OO.

Dan Grossman CSE341 Fall 2004, Lecture 23 4



'

&

$

%

Using the “Factory Pattern”

An OO solution uses “object factories”:

abstract class FrameFactory { Frame makeFrame(); }

class WindowsFrameFactory extends FrameFactory {

Frame makeFrame() { return new WindowsFrame(); }

}

class LinuxFrameFactory extends FrameFactory {

Frame makeFrame() { return new LinuxFrame(); }

}

...

Now we can have a global g holding a FrameFactory and doStuff

begins with Frame f = g.makeFrame();.

And we’ve written 3 classes before our first cup of coffee. :)

Dan Grossman CSE341 Fall 2004, Lecture 23 5



'

&

$

%

Convenience of First-Class Classes

Wouldn’t it be easier to skip the factory classes and just:

• Store in g either WindowsFrame or LinuxFrame

• Change doStuff to begin Frame f = new g();

Sure but you can’t do that in Java because classes aren’t objects. It

works perfectly in Smalltalk (f := g new).

An interesting connection to our equivalence lecture:

• WindowsFrameFactory.makeFrame() is equivalent to new

WindowsFrame() (if constructors-are-objects and new is a

message).

• Just like (fn x => C x) is equivalent to C where C is a datatype

constructor (if constructors-are-functions).

Dan Grossman CSE341 Fall 2004, Lecture 23 6



'

&

$

%

But if classes are objects...

“Classes are objects” is great, but Java is avoiding some crazy stuff

that:

• Doesn’t affect day-to-day Smalltalk-80 programming

• Does affect the Smalltalk-80 definition and implementation

Here’s the catch:

• What is the class of 3? What is the class of ’hi mom’?

• Okay, so what is the class of SmallInteger? Of String?

– If the same class (Smalltalk-76, Java), then they share methods

because class methods are class-class instance methods.

– Class (static) methods in Java are special

But we’re not done...

Dan Grossman CSE341 Fall 2004, Lecture 23 7



'

&

$

%

Metaclasses

• Okay, what is the class of SmallInteger class? Of StringInteger

class?

– If we keep stuff separate forever, we’ll have an infinite number

of classes!

• Okay, so what is the class of Metaclass?

• Okay, so what is the class of Metaclass class?

Clever, huh? But the “instance-of relation” ends in a cycle!

Moral: Even elegant systems often have their “dark corners”

Dan Grossman CSE341 Fall 2004, Lecture 23 8



'

&

$

%

Fragile Superclasses

A common problem in OO languages: What if you want/need to

change a class that has been subclassed? “No problem?”

• What if you add a method (new functionality, shared helper, etc.)

• What if you “optimize” a method implementation?

• What if, as a result, you can remove a method?

Bottom line: inheritance reuses implementations; and there is little

control over how subclasses reuse public methods and extend objects.

For the latter, distinguishing “add” vs. “override” can improve the

situation (see C# “versions” for example)

Dan Grossman CSE341 Fall 2004, Lecture 23 9



'

&

$

%

Multiple Inheritance

If code reuse via inheritance is so useful, why not allow multiple

superclasses?

• C++ does, Java and Smalltalk don’t

• Because it causes some semantic awkwardness and

implementation awkwardness (we’ll discuss only the former)

• Because it can interact awkwardly with static typing (not today)

Is it useful? Sure: A simple example is “3DColorPoint” assuming we

already have “3DPoint” and “ColorPoint”.

Naive view: Subclass has all fields and methods of all superclasses

Dan Grossman CSE341 Fall 2004, Lecture 23 10



'

&

$

%

Multiple Inheritance Semantic Problems

What if multiple superclasses define the same message m or field f?

Options for m:

• Reject subclass—too restrictive (the diamond problem)

• “Left-most superclass wins” (leads to silent weirdness and really

want per-method flexiblity)

• Require subclass to override m (can use directed resends)

Options for f : one copy or two copies?

C++ provides two forms of inheritance:

• One always makes two copies

• One makes one copy if fields were declared by same class

(diamonds)

Beyond this course: Other ways to compose behavior (e.g., mixins)

Dan Grossman CSE341 Fall 2004, Lecture 23 11



'

&

$

%

Multimethods

Remember our semantics for message send (with late-binding):

1. We use the receiver’s class to determine what method to call.

2. We evaluate the method body in an environment with self bound

to the receiver and the arguments bound to the parameters.

The second step does not really make self so special; we could

require methods to give an explicit name for this “0th” argument.

The first step does make self special; the classes of the other

arguments does not affect what method we call.

Multimethods let us do just that!

Dan Grossman CSE341 Fall 2004, Lecture 23 12



'

&

$

%

Why multimethods

Consider these reasonable methods:

"in Point"

distTo: p2

^ (((self getX - p2 getX) raisedTo: 2))

+ ((self getY - p2 getY) raisedTo: 2)) sqrt

"in 3DPoint"

distTo: p2

^ (((self getX - p2 getX) raisedTo: 2))

+ ((self getY - p2 getY) raisedTo: 2)

+ ((self getZ - p2 getZ) raisedTo: 2) sqrt

What might happen when we do p distTo: q?

Dan Grossman CSE341 Fall 2004, Lecture 23 13



'

&

$

%

Multimethods Example

Neither Smalltalk nor Java has multimethods, so we have to make up

syntax.

multimeth p1@Point distTo: p2@Point

^ (((p1 getX - p2 getX) raisedTo: 2))

+ ((p1 getY - p2 getY) raisedTo: 2)) sqrt

multimeth p1@3DPoint distTo: p2@3DPoint

^ (((p1 getX - p2 getX) raisedTo: 2))

+ ((p1 getY - p2 getY) raisedTo: 2)

+ ((p1 getZ - p2 getZ) raisedTo: 2) sqrt

Now we’re commutative and we can change the behavior for “one

Point and one 3DPoint” by writing two more methods (and one can

call the other)

Dan Grossman CSE341 Fall 2004, Lecture 23 14



'

&

$

%

Thoughts on multimethods

On the one hand, multimethods are “more OO” because they do more

late-binding which is the essence of OO.

On the other hand, they are “less OO” because if the “0th” argument

isn’t special, then the semantics is less “receiver-oriented” so it’s less

tied to the “interacting objects” analogy.

And there are pragmatic questions like:

• where do programmers define multimethods

• how does the implementation build the necessary tables for

resolving message-sends

• what if there’s no best match

Dan Grossman CSE341 Fall 2004, Lecture 23 15


