
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Fall 2004

Lecture 2— ML functions, pairs, and lists

Dan Grossman CSE341 Fall 2004, Lecture 2 1



'

&

$

%

What is a programming language?

Here are separable concepts for defining and evaluating a language:

• syntax: how do you write the various parts of the language?

• semantics: what do programs mean? (One way to answer: what

are the evaluation rules?)

• idioms: how do you typically use the language to express

computations?

• libraries: does the language provide “standard” facilities such as

file-access, hashtables, etc.? How?

• tools: what is available for manipulating programs in the

language?

Dan Grossman CSE341 Fall 2004, Lecture 2 2



'

&

$

%

Our focus

This course: focus on semantics and idioms to make you a better

programmer

Reality: Good programmers know semantics, idioms, libraries, and

tools

Libraries are crucial, but you can learn them on your own.

Dan Grossman CSE341 Fall 2004, Lecture 2 3



'

&

$

%

Goals for today

• Add some more absolutely essential ML constructs

• Discuss lots of “first-week” gotchas

• Enough to do first 5 homework problems (next 3 after Monday)

– And we will learn better constructs soon

Note: These slides make much more sense in conjunction with

lec2.sml.

Recall a program is a sequence of bindings...

Dan Grossman CSE341 Fall 2004, Lecture 2 4



'

&

$

%

Function Definitions
... A second kind of binding is for functions

Syntax: fun x0 (x1 : t1, ..., xn : tn) = e

Typing rules:

1. Context for e is (the function’s context extended with)

x1:t1, ..., xn:tn and :

2. x0 : (t1 * ... * tn) -> t where:

3. e has type t in this context

(This “definition” is circular because functions can call themselves and the

type-checker “guessed” t.)

(It turns out in ML there is always a “best guess” and the type-checker can

always “make that guess”. For now, it’s magic.)

Evaluation: A FUNCTION IS A VALUE.

Dan Grossman CSE341 Fall 2004, Lecture 2 5



'

&

$

%

Function Applications (a.k.a. Calls)

Syntax: e0 (e1,...,en)

Typing rules (all in the application’s context):

1. e0 must have some type (t1 * ... * tn) -> t

2. ei must have type ti (for i=1, ..., i=n)

3. e0 (e1,...,en) has type t

Evaluation rules:

1. e0 evaluates to a function f in the applicaton’s environment

2. ei evaluates to value vi in the application’s environment

3. result is f ’s body evaluated in an environment extended to bind

xi to vi (for i=1, ..., i=n).

(“an environment” is actually the environment where f was defined)

Dan Grossman CSE341 Fall 2004, Lecture 2 6



'

&

$

%

Some Gotchas

• The * between argument types (and pair-type components) has

nothing to do with the * for multiplication

• In practice, you almost never have to write argument types

– But you do for the way we will use pairs in homework 1

– And it can improve error messages and your understanding

– But type inference is a very cool thing in ML

– Types unneeded for other variables or function return-types

• Context and environment for a function body includes:

– Previous bindings

– Function arguments

– The function itself

– But not later bindings

Dan Grossman CSE341 Fall 2004, Lecture 2 7



'

&

$

%

Recursion

• A function can be defined in terms of itself.

• This “makes sense” if the calls to itself (recursive calls) solve

“simpler” problems.

• This is more powerful than loops and often more convenient.

• Many, many examples to come in 341.

Dan Grossman CSE341 Fall 2004, Lecture 2 8



'

&

$

%

Pairs

Our first way to build compound data out of simpler data:

• Syntax to build a pair: (e1,e2)

• If e1 has type t1 and e2 has type t2 (in current context), then

(e1,e2) has type t1*t2.

– (I wish it were (t1,t2), but it isn’t.)

• If e1 evaluates to v1 and e2 evaluates to v2 (in current

environment), then (e1,e2) evaluates to (v1,v2).

– (Pairs of values are values.)

• Syntax to get part of a pair: #1 e or #2 e.

• Type rules for getting part of a pair:

• Evaluation rules for getting part of a pair:

Dan Grossman CSE341 Fall 2004, Lecture 2 9



'

&

$

%

Lists
We can have pairs of pairs of pairs... but we still “commit” to the

amount of data when we write down a type.

Lists can have any number of elements:

• [] is the empty list

• More generally, [v1,v2,...,vn] is a length n list

• If e1 evaluates to v and e2 evaluates to a list [v1,v2,...,vn],

then e1::e2 evaluates to [v,v1,v2,...,vn].

• null e evaluates to true if and only if e evaluates to []

• If e evaluates to [v1,v2,...,vn], then hd e evaluates to v1 and

tl e evaluates to [v2,...,vn].

– If e evaluates to [], a run-time exception is raised (this is

different than a type error; more on this later)

Dan Grossman CSE341 Fall 2004, Lecture 2 10



'

&

$

%

List types

A given list’s elements must all have the same type.

If the elements have type t, then the list has type t list. Examples:

int list, (int*int) list, (int list) list.

What are the type rules for ::, null, hd, and tl?

• Possible exceptions do not affect the type.

Hmmm, that does not explain the type of [] ?

• It can have any list type, which is indicated via ’a list.

• That is, we can build a list of any type from [].

• Polymorphic types are 3 weeks ahead of us.

– Teaser: null, hd, and tl are not keywords!

Dan Grossman CSE341 Fall 2004, Lecture 2 11



'

&

$

%

Recursion again

Functions over lists that depend on all list elements will be recursive:

• What should the answer be for the empty list?

• What should they do for a non-empty list? (In terms of answer for

the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

• When do we create a small (e.g., empty) list?

• How should we build a bigger list out of a smaller one?

Dan Grossman CSE341 Fall 2004, Lecture 2 12


