
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Fall 2004

Lecture 14— Delayed Evaluation, Memoization, Thunks, Streams

Dan Grossman CSE341 Fall 2004, Lecture 14 1



'

&

$

%

Today

• Scheme top-level: forward references and evil mutation

• Delaying evaluation: Function bodies evaluated only at application

• Key idioms of delaying evaluation

– Conditionals

– Streams

– Laziness

– Memoization

• In general, evaluation rules defined by language semantics

– Some languages have “lazy” function application!

Dan Grossman CSE341 Fall 2004, Lecture 14 2



'

&

$

%

Top-level definitions

Scheme top-level allows forward references and mutation of bindings

• What should a name clash do? (In fact, it’s mutation.)

• How can you program defensively?

– General point: Make a local copy!

• How does “primitives are functions” make this harder?

• What do Schemers do in practice?

– Don’t mutate top-level bindings

– Use a module system for namespace management

Dan Grossman CSE341 Fall 2004, Lecture 14 3



'

&

$

%

Delayed Evaluation

For each language construct, there are rules governing when

subexpressions get evaluated. In ML, Scheme, and Java:

• function arguments are “eager” (call-by-value)

• conditional branches are not

We could define a language in which function arguments were not

evaluated before call, but instead at each use of argument in body.

(call-by-name)

• Sometimes faster: (lambda (x) 3)

• Sometimes slower: (lambda (x) (+ x x))

• Equivalent if function argument has no effects/non-termination

Dan Grossman CSE341 Fall 2004, Lecture 14 4



'

&

$

%

Thunks

A “thunk” is just a function taking no arguments, which works great

for delaying evaluation.

If thunks are lightweight enough syntactically, why not make if eager?

(Smalltalk does this!)

Dan Grossman CSE341 Fall 2004, Lecture 14 5



'

&

$

%

Streams

• A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and youll never get null.

• The universe is finite, so a stream must really be an object that

acts like an infinite list.

• The idea: use a function to describe what comes next.

Note: Deep connection to sequential feedback circuits

Note: Connection to UNIX pipes

Dan Grossman CSE341 Fall 2004, Lecture 14 6



'

&

$

%

Best of both worlds?

The “lazy” (call-by-need) rule: Evaluate the argument, the first time

it’s used. Save answer for subsequent uses.

• Asymptotically it’s the best

• But behind-the-scenes bookkeeping can be costly

• And it’s hard to reason about with effects

– Typically used in (sub)languages without effects

• Nonetheless, a key idiom with syntactic support in Scheme

– And related to memoization

Dan Grossman CSE341 Fall 2004, Lecture 14 7



'

&

$

%

Memoization

A “cache” of previous results is equivalent if results cannot change.

• Could be slower: cache too big or computation too cheap

• Could be faster: just a lookup

– On homework: An example where it’s a lot faster by

preventing an exponential explosion.

An association list is not the fastest data structure for large memo

tables, but works fine for 341.

Question: Why does assoc return the pair?

Dan Grossman CSE341 Fall 2004, Lecture 14 8


