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CSE 341:
Programming Languages

Dan Grossman

Fall 2004

Lecture 14— Delayed Evaluation, Memoization, Thunks, Streams
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Today

• Scheme top-level: forward references and evil mutation

• Delaying evaluation: Function bodies evaluated only at application

• Key idioms of delaying evaluation

– Conditionals

– Streams

– Laziness

– Memoization

• In general, evaluation rules defined by language semantics

– Some languages have “lazy” function application!
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Top-level definitions

Scheme top-level allows forward references and mutation of bindings

• What should a name clash do? (In fact, it’s mutation.)

• How can you program defensively?

– General point: Make a local copy!

• How does “primitives are functions” make this harder?

• What do Schemers do in practice?

– Don’t mutate top-level bindings

– Use a module system for namespace management
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Delayed Evaluation

For each language construct, there are rules governing when

subexpressions get evaluated. In ML, Scheme, and Java:

• function arguments are “eager” (call-by-value)

• conditional branches are not

We could define a language in which function arguments were not

evaluated before call, but instead at each use of argument in body.

(call-by-name)

• Sometimes faster: (lambda (x) 3)

• Sometimes slower: (lambda (x) (+ x x))

• Equivalent if function argument has no effects/non-termination
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Thunks

A “thunk” is just a function taking no arguments, which works great

for delaying evaluation.

If thunks are lightweight enough syntactically, why not make if eager?

(Smalltalk does this!)
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Streams

• A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and youll never get null.

• The universe is finite, so a stream must really be an object that

acts like an infinite list.

• The idea: use a function to describe what comes next.

Note: Deep connection to sequential feedback circuits

Note: Connection to UNIX pipes
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Best of both worlds?

The “lazy” (call-by-need) rule: Evaluate the argument, the first time

it’s used. Save answer for subsequent uses.

• Asymptotically it’s the best

• But behind-the-scenes bookkeeping can be costly

• And it’s hard to reason about with effects

– Typically used in (sub)languages without effects

• Nonetheless, a key idiom with syntactic support in Scheme

– And related to memoization
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Memoization

A “cache” of previous results is equivalent if results cannot change.

• Could be slower: cache too big or computation too cheap

• Could be faster: just a lookup

– On homework: An example where it’s a lot faster by

preventing an exponential explosion.

An association list is not the fastest data structure for large memo

tables, but works fine for 341.

Question: Why does assoc return the pair?
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