
CSE 341, Fall 2004, Assignment 3 (version 2)
Due: Friday 29 October, 9:00AM

This homework has to do with tadpole (The Absolute Dumbest Programming Language Ever). tadpole
programs are written using these ML datatypes:

datatype exp = I of int (* integer constant *)
| V of string (* variable *)
| Succ of exp (* add one *)
| Pred of exp (* subtract one *)
| If of exp * exp * exp (* if 1st is not 0, then 2nd else 3rd *)
| Not of exp (* if 0 then 1 else 0 *)

datatype stmt = Assign of string * exp (* mutate variable *)
| Seq of stmt * stmt (* do s1 and then s2 *)
| While of exp * stmt (* while e is not 0, do s *)

type environment = (string * int) list

• We use ML strings for tadpole variables, which are mutable

• All tadpole variables hold integers (the environment maps tadpole variables to integers)

• Every variable is always in scope. If a variable is not explicitly in the environment, then it maps to 0.

• A tadpole expression evaluates to an integer given an environment.

• A tadpole statement produces a “new” environment given an environment.

Here is a silly tadpole statement. If evaluated in an environment where x maps to i, it produces an
environment where x maps to i− 2 and y maps to i− 1:

Seq(Assign("x",Pred(Pred(V "x"))),
Assign("y",If(Not(I 3), I 7, Succ(V "x"))))

Warning: The sample solution is less than 75 lines, not including the datatype bindings above. However,
this assignment is probably more difficult than earlier ones.

1. (Multiplication in tadpole)
Write a tadpole statement that for the environment [("x",i),("y",j),("z",0)] produces an envi-
ronment where "z" maps to i times j. Assume i and j are not negative. The result environment can
have any other mappings (temporary variables are fine and it’s fine to change what "x" and "y" map
to). Bind your tadpole statement to the ML variable multiply.
Hints: Use nested loops where the inner loop adds i to "z". Use another variable in addition to "x",
"y", and "z". Sample solution is 6 lines. (Do not test multiply on large numbers; see problem EC1.)

2. (Expression evaluation with a lookup function)
Write an ML function eval exp for evaluating tadpole expressions to integers. It should not take
an expression and an environment. Instead it takes an expression and an ML function of type
string->int. eval exp should use the function to evaluate variables. (Problem 3 implements the
necessary function.)
Hints: Evaluating expressions requires a recursive ML function. Evaluating a tadpole if-expression
will evaluate 2 of the 3 subexpressions. Sample solution is 11 lines.

3. (The lookup function)
Write an ML function lookup that given a tadpole environment (i.e., a string*int list) returns
an ML function suitable for passing to eval exp. The returned function takes a string s and returns
the int that is paired with the occurrence of s closest to the list’s beginning, or 0 if s is not in the list.
Hints: You can use = to see if two strings are equal. Do not worry if lookup has the more general type
(’’a * int) list -> ’’a -> int. The sample solution uses currying and is 4 lines.

1



4. (Statement evaluation)
Write an ML function eval stmt that given a tadpole statement and environment evaluates the
statement under the environment and returns a “new” environment.
Hints: To produce a new environment, you can just add a new pair to the beginning of another
environment because pairs earlier in the list shadow later ones. Use eval exp and lookup. For
sequences, the environment the first statement produces is the environment for evaluating the second
statement. For loops, if the expression is not 0 under the environment, we (re)evaluate the loop under
the environment that the loop’s body produces. Sample solution is 7 lines.

Test: lookup (eval stmt (multiply,[("x",7),("y",9)])) "z"; should evaluate to 63.

5. (If-expression simplification)
Write an ML function simplify tests of type exp->exp. The result expression must be equivalent to
the argument (i.e., evaluate to the same int for every environment) and not have any subexpressions
of any of the following forms (where e and e′ stand for any tadpole expression and i and j stand for
any int):

• If(I i, e, e′)

• If(e, I 0, I 1)

• If(e, I 1, I 0)

• If(e, I i, I j) (if i = j)

• Not(I i)

Hints: For each “illegal” form, there is a straightforward simplification (but the third one is tricky
because e might evaluate to something that is neither 0 nor 1). Recursively process all subexpressions
of every expression form; do this “before” checking the “outer” expression. Sample solution is 18 lines.

6. (Changing toplevel expressions)
Write an ML function change all toplevel exps that takes a function f (of type exp->exp) and
evaluates to a function that takes a tadpole statement s. This function should return a statement
just like s except each toplevel expression e is replaced with the result of applying f to e. A toplevel
expression is just the expression part of an assignment or loop (and not a subexpression of such an
expression).

7. (Statement simplification)
Using change all toplevel exps, write an ML function simplify stmt that takes a statement and
produces a statement where each expression is simplified with simplify tests.
Hint: Sample solution is 1 line.

8. (Negating top-level expressions)
Using change all toplevel exps, write an ML function negate all toplevel that takes a statement
and produces a statement where each toplevel expression e is replaced with Not e.
Hint: Sample solution is 1 line.

9. (Replacing top-level variables)
Using change all toplevel exps, write an ML function replace all toplevel var that takes a
tadpole variable x, a tadpole expression e, and a tadpole statement s and replaces any toplevel
expression V x in s with e. For example, for x="y", e=I 0, and s=
Seq(Assign("y",V "x"),Seq(Assign("z",V "y"),Assign("z",Succ (V "y")))),
the result would be
Seq(Assign("y",V "x"),Seq(Assign("z",I 0),Assign("z",Succ (V "y")))).
Hint: Sample solution is 7 lines.

(See the next page for extra credit and turn-in instructions.)

2



Extra Credit: The following three questions are all extra credit. You can receive up to 1 point for each.
You can do any subset of them.

EC1 (More efficient evaluation) The evaluator you wrote for problems 2–4 is inefficient because it keeps
building a bigger environment every time a tadpole variable is mutated. Instead, write an ML
function update env of type env*string*int->env that changes the environment to map the string
to the int and does not have the string in the list more than once. Do not use mutation in ML; it
isn’t necessary. Write eval stmt2 that is like eval stmt except it uses update env. (You should be
able to, for example, multiply larger numbers in tadpole.)

EC2 (No negated tests) Write an ML function no test negates of type exp->exp. The result expression
must be equivalent to the argument and not contain any expressions of the form If(Not e1, e2, e3).

EC3 (Tetris meets tadpole) Write an ML function on horizontal line that takes two integers, i and n,
and produces a tadpole program that does the following: Essentially, it decides if a “Tetris piece”
with n squares has all its square on horizontal line i (as in homework 1, problem 2). It assumes that
in the environment, the x and y coordinates for the squares are in "x1", ..., "xn" and "y1", ..., "yn".
It “returns” by assigning to "ans" (1 for true and 0 for false).
Hint: The ^ operator concatenates ML strings and Int.toString converts an int to a string.

Type Summary: Evaluating a correct solution should generate these bindings: (You may have different
type synonyms or more general types. In particular, it is fine if the REP loop gives lookup the type
(’’a * int) list -> ’’a -> int.) Also, note the value for multiply has been replaced by _ below.

val multiply = _ : stmt
val eval_exp = fn : exp * (string -> int) -> int
val lookup = fn : (string * int) list -> string -> int
val eval_stmt = fn : stmt * (string * int) list -> (string * int) list
val simplify_tests = fn : exp -> exp
val change_all_toplevel_exps = fn : (exp -> exp) -> stmt -> stmt
val simplify_stmt = fn : stmt -> stmt
val negate_all_toplevel = fn : stmt -> stmt
val replace_all_toplevel_var = fn : string * exp * stmt -> stmt

Of course, generating these bindings does not guarantee that your solutions are correct: Test your functions.

The bindings for the extra-credit problems are:

val update_env = fn : (string * int) list * string * int -> (string * int) list
val eval_stmt2 = fn : stmt * (string * int) list -> (string * int) list
val no_test_negates = fn : exp -> exp
val on_horizontal_line = fn : int * int -> stmt

Turn-in Instructions

• Put all your solutions in one file, lastname hw3.sml, where lastname is replaced with your last name.

• The first line of your .sml file should be an ML comment with your name and the phrase homework 3.

• Email your solution to daverich@cs.washington.edu.

• The subject of your email should be exactly [cse341-hw3].

• Your .sml file should be an attachment.

3


