CSE 341, Fall 2004, Assignment 2
Due: Monday 18 October, 9:00AM

Version 1

You will write 10 SML functions having to do with “Tetris moves” and “Tetris pieces”. Your solutions must
use pattern-matching. You may not use the functions null, hd, or t1, nor may you use anything containing
a # character. You may not use mutation. You may use ML’s built-in append operator (@). Style matters.
The sample solution is roughly 115 lines.

All necessary Tetris knowledge is here; ask if something is unclear.
A player can mowve a piece left or right or rotate it clockwise or counterclockwise:

datatype player_move = Left | Right | Clockwise | CounterClockwise

Given a list of moves, a piece moves a distance and a rotation. The distance is “number of Right moves
minus number of Left moves” (and can be negative). For rotation, a piece starts at “0 degrees”, Clockwise
“substracts 90 degrees” and Counterclockwise “adds 90 degrees”, but as usual, the rotation is is always
between 0 and 360. We can summarize the effect of a list of moves with these types:

datatype rotation = RO | R90 | R180 | R270
type move_summary = {distance : int, rotation : rotation}

Squares and pieces are represented like in homework 1. A piece-maker is a next_square list:
datatype next_square = North | South | East | West
The piece that a piece-maker p makes depends on a current-square (x,y) and is defined as follows:
e If pis [], the piece contains 1 square, which is (x,y).
e IfpisNorth: :p2, then the piece contains (x,y) and the piece made by p2 with current-square (x,y+1).

e Similarly, South changes the current-square “down 1”7, East “right 17, and West “left 1”.

1. (Summarizing Moves) Write these functions:

(a) change_distance takes a player_move m and an int d and evaluates to the distance a piece
would travel if we did the move m after the piece had traveled distance d. (Hint: This function
is easier to write than describe. Some moves do not change the distance traveled.)

(b) rotate takes a player_move m and a rotation r and evaluates to the rotation the piece would
turn to if we did the move m when the piece was already at rotation r. (Hint: For an elegant
solution, pattern-match on the pair (m,r).)

(c) summarize_move takes a player_move list and evaluates to the move_summary describing the
distance and rotation of a piece after the moves, assuming the piece started at distance 0 and
rotation 0 degrees. (Hint: The order of the moves does not matter. Use earlier functions.)

2. (Unsummarizing Moves) Write these functions:

(a) make_n_moves takes a player_move m and an int n and evaluates to to a list with n moves m.
(b) unsummarize_move takes a move_summary and evaluates to a minimal-length player_move list
that the summary correctly summarizes. (Hint: Use make_n_moves.)

3. (Generating Piece-Makers) Write these functions:

(a) add_to_all takes a next_square n and a next_square list list lst and evaluates to a list
where the i*" element is n consed onto the i** element of Ist. (Hint: If you do not give explicit
types, add_to_all will have type ’a * ’a list list -> ’a list list; this is fine.)

4.

5.

Typ

(b) all_next_squares takes a number n and returns a next_square list list that has every
length-n next_square_list in it exactly once and no other elements. (Hint: Use add_to_all.
The length of all_next_squares n is 4" (so don’t pass large numbers). 4° = 1.)

(Filtering Repeated-Square Makers) Write these functions

(a) make_piece takes a next_square list Ist and returns the piece obtained from starting at (1,1)
and following the directions in Ist. (Hint: Use a helper function that takes a list, and current x
and y coordinates.)

(b) has_repeat takes a piece (type (int*int) list) and evaluates to true if two squares in the piece
are the same.

(c) filter_repeats takes a next_square list list and evaluates to a next_square list list.
The result list is a subset of the argument list; it containst exactly those elements that make
pieces without repeated squares. (Hint: Use earlier functions.)

(Extra Credit: Tail-Recursive Piece-Generation) Write all_next_squares2, which given the same
argument as all_next_squares evaluates to the same result. However, all_next_squares2 must call
only a tail-recursive helper function. This helper function must be tail recursive and call only itself
and built-in operations (such as - and ::). Hint: Sample solution is 11 lines.

e Summary: Evaluating a correct solution should generate these bindings (allowing move_summary to

replace {distance:int, rotation:rotation} and vice-versa because they are type synonyms):

datatype player_move = Clockwise | CounterClockwise | Left | Right
datatype rotation = RO | R180 | R270 | R90

type move_summary = {distance:int, rotation:rotation}

datatype next_square = East | North | South | West

val
val
val
val
val
val
val
val
val
val

change_distance = fn : player_move * int -> int

rotate = fn : player_move * rotation -> rotation

summarize_move = fn : player_move list -> {distance:int, rotation:rotation}
make_n_moves = fn : player_move * int -> player_move list

unsummarize_move = fn : move_summary -> player_move list

add_to_all = fn : next_square * next_square list list -> next_square list list
all_next_squares = fn : int -> next_square list list

make_piece = fn : next_square list -> (int * int) list

has_repeat = fn : (int * int) list -> bool

filter_repeats = fn : next_square list list -> next_square list list

Of course, generating these bindings does not guarantee that your solutions are correct: Test your functions.

Turn-in Instructions

Put all your solutions in one file, lastname_hw2.sml, where lastname is replaced with your last name.
The first line of your .sml file should be an ML comment with your name and the phrase homework 2.
Email your solution to brianhk@cs.washington.edu.

The subject of your email should be exactly [cse341-hw2].

Your .sml file should be an attachment.

