Type Systems and Semantics

This material covered in Chapter 3 of the text

- Syntax versus semantics
- Types
- Formal descriptions of programming language semantics
 - Operational semantics
 - Axiomatic semantics (just skim this section in book)
 - Denotational semantics

Type Systems

- Terms to learn:
 - Type
 - Type system
 - Statically typed language
 - Dynamically typed language
 - Type error
 - Strongly typed
 - Weakly typed
 - Type safe program
 - Type safe language

Type - Definition

- Type: a set of values and operations on those values
- Java examples of types:
 - int
 - values = {-2^31, -2^30, ..., -1, 0, 1, 2, ..., 2^31-1} (2^31 = 2,147,483,648)
 - operations = {+, -, *, ...}
 - boolean
 - values = {false, true}
 - operations = {&&, ||, !, ...}
 - String
 - values = {"", "a", "b", ..., "A", ..., "$", ..., "\Σ", ..., "aa", "ab", ...}
 - operations = {+, trim(), equals(Object x), clone(), ...}
 - Applet
 - values = {all possible applets}
 - operations = {init(), paint(Graphics g), clone(), ...}

Statically Typed Languages

- Statically typed. Statically typed means that the type of every expression can be determined at compile time. Java and Haskell are examples of statically typed languages. (Scheme is not statically typed though.)
- Each variable has a single type throughout the lifetime of that variable at runtime.

Dynamically Typed Languages

- Dynamically typed. The types of expressions are not known until runtime.
 - Example languages: Smalltalk, Scheme.
- Book adds this additional part to the definition:
 - The type of a variable can change dynamically during the execution of the program
 - This isn't a standard part of the definition of dynamically typed, but it's true for all the dynamically typed languages that I know of
- This is legal Smalltalk code:

 x ← 3.5.
 x ← true.
Type error
- A type error is a runtime error that occurs when we attempt an operation on a value for which that operation is not defined.
- Examples:
  ```java
  boolean b, c;
  b = c + 1;
  
  int i;
  boolean b;
  i = b;
  ```

Strongly Typed Language
- A language is **strongly typed** if the language guarantees that a value of one type can't be incorrectly used as if it were another type, in other words, that all expressions are guaranteed to be type consistent.
- This checking can be done at compile time, at run time, or a combination of both.
- Java, Smalltalk, Scheme, Haskell, and Ada are examples of strongly typed languages.
- Fortran and C are examples of languages that aren't strongly typed.

Weakly Typed
- **Weakly typed**. Weakly typed means "not strongly typed".

Type Safety
- A program is **type safe** if it is known to be free of type errors.
 - However, the system is allowed to halt at runtime before performing an operation that would result in a type error. Unfortunately the book is sloppy about this.
- A language is **type safe** if all legal programs in that language are type safe.
 - So strongly typed language = type safe language.
- Some languages for systems programming, for example Mesa, have a safe subset, although the language as a whole is not type safe.

Tradeoffs
- Generally we want languages to be type safe.
- An exception is a language used for some kinds of systems programming, for example writing a garbage collector. The "safe subset" approach is one way to deal with this problem.
- Advantages of static typing:
 - catch errors at compile time
 - machine-checkable documentation
 - potential for improved efficiency
- Advantages of dynamic typing:
 - Flexibility
 - rapid prototyping

Terminology about Types - Problems
- Unfortunately different authors sometimes use different definitions for the terms "statically typed" and "strongly typed".
- **Statically typed**. The book defines "statically typed" to mean that the compiler can statically assign a type to every expression – but that type might be wrong.
 - By this definition C and Fortran are statically typed.
 - Other authors define "statically typed" to also imply "type safe".
- **Strongly typed**. The book equate strongly typed and type safe (sloppily ...)
- For other authors, strongly typed implies type safe and statically typed. (Is Scheme strongly typed?)
- To avoid misunderstanding, one can describe a language as e.g. "type safe and statically typed".
Jay

- Jay is a toy language used in the text to illustrate language concepts. In its original form it has no procedures or functions, and no user-defined types
- Jay is statically and strongly typed

Type checking in Jay

- Informal summary of type checking in Jay:
 - Each variable must have a unique identifier
 - Each variable has a type (int or boolean)
 - Each variable in an expression must have been declared
 - Expression has a result type (details on next slide)
 - For an assignment, the type of the variable on the left must be the same as the type of the expression on the right
 - For a conditional or loop, the type of the expression must be boolean

Result type of an expression

- Let the result type be r. For an expression expr:
 - If expr is a variable, r is the type of the variable
 - If expr is a constant, r is the type of the constant
 - If expr has an arithmetic operator (+ - * /) at the top level, then r is int, and the types of the terms of the operator must be int
 - If expr has a relational operator at the top level, then r is bool, and the types of the terms must be int
 - If expr has a boolean operator at the top level, then r is bool, and the types of the terms must be bool

Jay – Type-checking Mini-Exercise #1

- Describe how the following Jay program would be type-checked.

```jay
void main () {
    int j, k;
    boolean b;
    j = 2;
    k = 3;
    b = (j<k) && true;
    if (b) {
        j = j+10;
    }
}
```

Jay – Type-checking Mini-Exercise #2

- Describe how the following Jay program would be type-checked.

```jay
void main () {
    int j;
    boolean b;
    j = 2;
    b = 3;
}
```

Semantic Domains

- The semantic domains for a language are sets with well-understood properties, which are independently understood.
- Examples:
 - N (the set of natural numbers)
 - I (the integers)
 - B (true, false)
- When we are speaking precisely, we distinguish the semantic domains from the types in the language itself (for example, int versus I)
Semantic Domains (2)

- Useful semantic domains for imperative languages:
 - environment γ
pairs $<$variable, memory location$>$
 - memory μ
pairs $<$location, value$>$
 - locations \mathbb{N}
natural numbers
 - state σ
pairs $<$variable, value$>$
 (this is a simplified version, that leaves out memory locations)

Semantic Domains – Example

- Suppose we have variables b, stored at location 100, and k, stored at location 101. At a particular time, b contains false, and k contains 3.
 - environment $\gamma = \{<b,100>, <k,101>\}$
 - memory $\mu = \{<100, false>, <101, 3>\}$
 - locations $\mathbb{N} = \{100, 101\}$
 - state $\sigma_1 = \{<b, false>, <k, 3>\}$

Semantic Domains – Assignments

- Suppose we have variables b and k (as on the previous slide). After an assignment k=4 we have:
 - environment $\gamma = \{<b,100>, <k,101>\}$
 - memory $\mu = \{<100, false>, <101, 4>\}$
 - locations $\mathbb{N} = \{100, 101\}$
 - state $\sigma_2 = \{<b, false>, <k, 4>\}$

Semantic Domains – Overriding Union

$\sigma_1 = \{<x, 10>, <y, 20>\}$
$\sigma_2 = \sigma_1 \cup \{<y, 30>, <z, 40>\}$
So $\sigma_2 = \{<x, 10>, <y, 30>, <z, 40>\}$

Jay – Semantic Domains Mini-Exercise

- What is the state of the following Jay program initially, and after executing each statement?

```java
Void main () {
    int j, k;
    boolean b;
    j = 2;
    k = 3;
    b = (j<k) && true;
    if (b) {
        j = j+10;
    }
}```

Operational Semantics

- Define the meaning of a program by simulating it with a simple abstract machine
- $\sigma(e) \Rightarrow v$
  compute the value $v$ of an expression $e$ in state $\sigma$
- Execution rules have the form

  \[
  \text{premise} \quad \Rightarrow \quad \text{conclusion}
  \]

(If the premise is true, then the conclusion is true)
Execution Rules - Examples

- Execution rule for addition:

\[
\sigma(e_1) \Rightarrow v_1 \quad \sigma(e_2) \Rightarrow v_2
\]
\[
\sigma(e_1 + e_2) \Rightarrow v_1 + v_2
\]

So if \( \sigma = \{<x, 10>, <y, 20>\} \) then
\( \sigma(x + y) \Rightarrow 30 \)

Execution Rule for Assignment

- Consider an assignment statement \( s.target = s.source; \)

\[
\sigma(s.source) \Rightarrow v
\]
\[
\sigma(s.target = s.source;) \Rightarrow \sigma \cup <s.target,v> \]

So if \( \sigma = \{<x, 10>, <y, 20>\} \) then after executing \( x=x+y \)
\( \sigma = \{<x, 30>, <y, 20>\} \)

Execution Rule for Statement Sequences

\[
\sigma(s_1) \Rightarrow s_1 \quad \sigma(s_2) \Rightarrow s_2
\]
\[
\sigma(s_1 s_2) \Rightarrow s_2
\]
\[
\sigma(s_1(s_2)) \Rightarrow s_2
\]

So if \( \sigma = \{<x, 10>, <y, 20>\} \)
\( s_1 \) is \( x=x+y; \)
\( s_2 \) is \( y=0; \)
then
\( \sigma(x=x+y; y=0;) \Rightarrow \{<x, 30>, <y, 0>\} \)

Other Execution Rules

- Conditionals
- Loops (note that this is a recursive rule)

(see the text for definitions)

Operational Semantics Mini-Exercise #1

- Use the operational semantics rules to find the final state for this program:

```c
Void main () {
 int j;
 j = 2;
 if (i<5) {
 j = j+10;
 }
}
```

Operational Semantics Mini-Exercise #2

- Use the operational semantics rules to find the final state for this program:

```c
Void main () {
 int j;
 j = 2;
 while (i<5) {
 j = j+2;
 }
}
```
Axiomatic Semantics

- Uses the notion of an assertion: a predicate that describes the state of a program at some point in its execution
- Concepts:
  - Precondition
  - Postcondition
- $\{P\}s\{Q\}$
  - This means that if precondition $P$ holds before executing $s$, then $Q$ will hold after executing $s$ (provided $s$ halts)
- Other concept: loop invariant
- Expectation in the 60's and 70's: eventually programs would be routinely proved correct.
- This obviously hasn’t happened, but the notion of preconditions, postconditions, and loop invariants are still useful

Denotational Semantics

- The denotational semantics of a language defines its meaning in terms of a “meaning function” $M$
  - As before let $\sigma$ be a program state.
  - Let $\Sigma$ be the set of all possible program states.
  - Let Class be a kind of element in the language (e.g. Assignment, Conditional, etc)
- Then:
  $M: \text{Class} \times \Sigma \rightarrow \Sigma$
- In other words, the meaning function $M$ takes a language element and a state $\sigma_1$ and returns a new state $\sigma_2$

Meaning of Assignments

$M: \text{Assignment} \times \Sigma \rightarrow \Sigma$

$M(\text{Assignment } a, \text{ State } \sigma) =$

$\sigma \uplus \{<a.\text{target}, M(a.\text{source}, \sigma)>\}$

Example:

$M(\text{j=x }, \{<x,5>, <j, \text{undef}>\}) = \{<x,5>, <j,5>\}$

Meaning of Expressions

$M: \text{Expression} \times \text{State} \rightarrow \text{Value}$

$M(\text{Expression } e, \text{ State } \sigma)$

- $e$ if $e$ is a Value
- $\sigma(e)$ if $e$ is a Variable
- $M(x_1,\sigma) + M(x_2,\sigma)$ if $e = x_1 + x_2$
- $M(x_1,\sigma) - M(x_2,\sigma)$ if $e = x_1 - x_2$

More on Denotational Semantics (Optional, Extra Material)

- In most papers on denotational semantics, the meaning function $M$ is written using double brackets:
  
  $[[e]]\sigma$

  rather than

  $M(\sigma, e)$

- Strictly speaking, the meaning function applied to a constant takes an element of the language into a semantic domain – these two domains are different:

  $[[12]]\sigma = 12$

- There is a copy of a tutorial on denotational semantics by R.D. Tennent linked from the 341 website for those who would like to learn more.