
CSE 341, Winter 2003

1

CSE 341, Winter 2003 1

Imperative Languages

This material covered in Chapter 4 of the text

� We�re not going to cover everything in this
chapter � these slides indicate the material that
you should know for the course.

CSE 341, Winter 2003 2

Turing Completeness
� A Turing complete language is one that has

computational power equivalent to a Turing machine.
� No programming language run on an actual, physical

computer can completely meet this requirements, since
a Turing machine has unlimited storage capacity.

� Except for this, any reasonable programming language
is Turing complete.
� Corollary: it�s not interesting to compare whether you can

compute more things in one programming language than
another.

� (Note: book�s definition of Turing complete is completely
bogus � although in fact Jay is Turing complete. Take
CSE 322.)

CSE 341, Winter 2003 3

Names in Programming Languages

� Java uses reserved words, such as while, if, int,
etc.

� You can�t declare a variable named while, or
redefine int.

� The alternative (predefined variables, no
reserved words) is more confusing and error-
prone.

� For example, this is legal PL/I:
IF IF>THEN THEN THEN=0;
ELSE;
THEN = 1;

CSE 341, Winter 2003 4

Primitive types in Java (was also in
Java slides)

� boolean
� char (16-bit) //unicode
� byte (8-bit signed)
� short (16-bit signed)
� int (32-bit signed)
� long (64-bit signed)
� float (32-bit signed)
� double (64-bit signed)

Integer types

Floating point types

CSE 341, Winter 2003 5

Maximum and minimum values

� The maximum and mimimum values for Java�s
primitive types are available from static methods
in the wrapper classes:
� Float.MAX_VALUE (largest positive floating point

value)
� Float.MIN_VALUE (smallest positive value)
� Byte.MAX_VALUE (largest byte value, i.e. 127)
� Byte.MIN_VALUE (smallest byte value, i.e. -128)
� etc.

CSE 341, Winter 2003 6

Overloading and overriding

� Operators (+, -, *, �) in Java and most other
languages are overloaded. Thus, there are
actually several different + operations, and the
compiler decides which one is needed based on
the types of the arguments
� i+j (for integers i and j)
� x+y (for floats x and y)

CSE 341, Winter 2003

2

CSE 341, Winter 2003 7

Overloading and overriding (2)

� Method names in Java can also be overloaded.
For example:
� println(int I)
� println(float x)
� println(Object a)
� � etc

� Overriding is a separate concept � we can override an
inherited method from a superclass with a method with
the same signature in the subclass
� equal(Object x) in class Object
� equal(Object x) in class Point

CSE 341, Winter 2003 8

Coercion

� In Java (as in many other languages) the programmer
can write mixed mode expressions, containing different
numeric types.

� If there wouldn�t be a loss of information, Java will
automatically coerce some of the values so that the
types are the same. Example:
� i + x for int i and float x
� This is the same as (new Integer(i).floatValue()) + x

� You get a compile-time error if information would be
lost. Example:
� f = d for float f and double d will give a compile-time error

CSE 341, Winter 2003 9

Scope

� Java (and C, C++, Ada, Pascal, Modula,
Scheme, Haskell, etc) all use static scoping.
� Also called lexical scoping
� Which variable is referenced depends on the static

structure of the program, not where the procedure
was called from

� A variable is global if it is declared in the
outermost scope, and local if it is declared in the
current scope.
� �non-local� means (surprise) �not local�

CSE 341, Winter 2003 10

Scope Example 1

This is legal Java code (and considered good
style):

public class Test {
int x;

void set(int x) {
this.x = x;
}

}

CSE 341, Winter 2003 11

Scope Example 2

This is also legal Java code (although anyone who
wrote this deserves an unpleasant fate):

public class Test {
int x;

void set (int x) {
this.x = x;
}

class Inside {
int x;
void set(int x) {

this.x = x;
}

}

} CSE 341, Winter 2003 12

Scoping (to be continued)

� We�ll return to a more complete discussion of
scoping when we get to Scheme

� Static scoping is very general and elegant in
Scheme � it is made complicated in Java by
having several different kinds of variables (static
fields, ordinary fields, method parameters, local
variables, variables in inner classes)

