
The CLP Scheme

CLP(D) is a language framework, where D is the do-
main of the constraints.

Example CLP languages:

� Prolog

� CHIP

� Prolog III – domain is rationals, booleans, and
trees

� CLP (�*) – domain is regular sets

� CLP(R) – domain is reals (plus trees, i.e. the data
types that Prolog uses)

1

CLP(R) – Domain and Solver

CLP(R) can solve arbitrary collections of linear equal-
ity and inequality constraints over the real numbers.

It can also solve other kinds of constraints over the re-
als if it can find the answer using one-step deductions
(first find this variable using one constraint, then find
another variable using another constraint, etc — but
no simultaneous equations).

Besides the domain of the real numbers, CLP(R) has
another domain: trees. These allow us to model data
structures such as lists, records, and trees.

2

CLP(R) Examples

Sample goals (just using primitive constraints – no
user-defined rules) and answers:

?- X=Y+1, Y=10.

X=11, Y=10

?- 2*A+B=7, 3*A+B=9.

A=2, B=3

? X>=2*Y, Y>=5, X<=10.

X=10, Y=5.

?- X*X*X + X = 10.

maybe

(The last goal does have a solution X=2. The
“maybe” answer means the constraints are too hard
for CLP(R) to solve.)

3

CLP(R) Examples

CLP(R) programs are collections of facts and rules.

Sample rule:

/* centigrade-fahrenheit relation */

cf(C,F) :-

F = 1.8*C + 32.

Sample Goals:

?- cf(100,A).

A=212.0

?- cf(A,B), A>100, B<200.

no.

?- cf(X,X).

X=-40.0

4

Evaluation in CLP Languages – Informal Discus-
sion

Given an initial goal, a CLP interpreter rewrites any
user-defined constraints in the goal using their defini-
tions.

This may yield more user defined constraints, which
are then rewritten.

Primitive constraints are kept in a constraint store.

We continue until there are only primitive constraints,
which are solved by the system.

However, if the constraint store contains an unsatisfi-
able set of constraints, we can stop rewriting immedi-
ately.

We may have multiple rules for a given user-defined
constraint. We try these in order, backtracking if one
fails.

5

Example Derivation

CLP(R) program:

cf(C,F) :- /* rule R1 */

F = 1.8*C + 32.

double(X,Y) := Y=2*X. /* rule R2 */

Consider the goal cf(A,B), double(A,200).

hcf(A;B); double(A;200) j truei

)

using R1:
hA = C;B = F; F = 1:8 � C +32;

double(A;200) j truei

)

6

hB = F; F = 1:8 � C +32; double(A;200) j
A= Ci

)

hF = 1:8 � C +32; double(A;200) j A= C;

B = F i

)

hdouble(A;200) j A= C;B = F;

F = 1:8 � C +32i

)

using R2:
hA = X;200 = Y; Y = 2 �X j A = C;B = F;

F = 1:8 � C +32i

)

h200 = Y; Y = 2 �X j A= C;B = F;

F = 1:8 � C +32; A = Xi

)

hY = 2 �X j A = C;B = F; F = 1:8 � C +32;

A= X;200 = Y i,

)

h2 j A= C;B = F; F = 1:8 � C +32;

A= X;200 = Y; Y = 2 �Xi

Simplifying with respect to the variables inG0 (namely
A;B) we get the answer A= 100; B = 212

Some Simple Recursive CLP(R) Programs

/* LENGTH OF LIST */

length([],0).

length([H|T],N) :-

N > 0,

length(T,N-1).

/* compare this with a scheme program:

(define (length x)

(if (null? x) 0

(+ 1 (length (cdr x)))))

*/

/* SUM OF THE ELEMENTS IN A LIST */

sum([],0).

sum([X|Xs],X+S) :- sum(Xs,S).

7

/* FACTORIAL */

factorial(0, 1).

factorial(N, N * F) :-

N > 0 ,

fact(N - 1, F).

Greatest Common Divisor

/* GREATEST COMMON DIVISOR

(USING EUCLID’S ALGORITHM) */

gcd(A,B,G) :-

A < B,

gcd(A,B-A,G).

gcd(A,B,G) :-

A > B,

gcd(A-B,B,G).

gcd(A,A,A).

8

Quicksort

quicksort([],[]).

quicksort([X|Xs],Sorted) :-

partition(X,Xs,Smalls,Bigs),

quicksort(Smalls,SortedSmalls),

quicksort(Bigs,SortedBigs),

append(SortedSmalls,[X|SortedBigs],Sorted).

partition(Pivot,[],[],[]).

partition(Pivot,[X|Xs],[X|Ys],Zs) :-

X <= Pivot,

partition(Pivot,Xs,Ys,Zs).

partition(Pivot,[X|Xs],Ys,[X|Zs]) :-

X > Pivot,

partition(Pivot,Xs,Ys,Zs).

append([],X,X).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

9

