
Why programming
languages?

A short polemic
on the value of a diverse linguistic diet

Common complaints

"Everyone uses C++ or Java."

"The languages we're learning are impractical
and only good for ivory-tower academics with no
connection to the real world."

"Why don't you teach us how to build real
programs?"

"The only thing these languages are good for is
building toys!"

"I need to build enterprise-class solutions for
information technology professionals! Now!!!!"

"Everyone uses C++, or Java."

...or, uh, in two years, C#.

Eight years ago nobody used Java.

And, well, twenty years ago people wrote a lot of COBOL
and FORTRAN. (They still do.)

Five years ago, Apple's next-generation OS was going to
have its primary APIs in Objective-C.

Java will have type-safe generics (bounded
polymorphism) in a couple of years. So will C#.

So what language do you want us to teach you now?
i.e., How long do you want to be employed?

"impractical", "academic"
features

People used to believe that all these were impractical:

garbage collection

inheritance/dynamic dispatch

typesafe generic polymorphism

pure object-oriented design

exceptions

All these features are in widely used languages today, or
will be soon.

So what language features do you want us not to teach
you today? (Lambdas? Python and Ruby have them.)

"I want to build real programs!"

What makes development of "real" programs hard?

The inherent difficulty of building real programs has
little to do with

Wrestling with the slow write-compile-build-test development
cycle of C, C++, or Java

Learning the bloated, complex APIs and IDEs that professional
programmers put up with every day

Programming is inherently hard (partly) because of
the thought required to write correct programs.

Languages are excellent tools to teach different ways of
thinking about problems.

If you prefer to memorize API calls, then you're in the
wrong place.

"The only thing this stuff is
good for is building toys!"

That's exactly what the suits at Xerox PARC said in the
70's when their researchers invented Ethernet, the
graphical user interface, and object-oriented
programming.

Also, do not confuse libraries with languages.

Example:
Perl used to have the best libraries for string munging.

In most other respects, Perl is a horrible language.

Today, when Python and Ruby (far nicer languages) both have
Perl-like regular expression packages, a lot of people continue to
cling irrationally to Perl.

They suffer.

"I need to build
enterprise-class solutions

for information technology
professionals! Now!!!!"

Do you ask your math teacher to teach you how to use
Microsoft Excel so you can do "enterprise-class
accounting solutions" instead of calculus?

Do you ask your English teacher to teach you to write
press releases and ad copy instead of essays?

What makes Computer Science different?

A more positive take

Every language is a window into a way of thinking

Knowing more languages helps you think about the
organization of a system in different ways.

Languages are beautiful and interesting artifacts in
their own right.

A more positive take

Also, on more concrete, direct, practical terms, broad
understanding of languages will help you to:

Cope with evolution of programming practice

Design/implement languages embedded within larger
applications

Evaluate the suitability to task of competing
programming technologies

Evolution of programming
practice

Someday, the languages you use today are going to be
obsolete.

The features that new languages incorporate are
almost always old features from other languages.

Learning the concepts that form the foundation of all
languages will enable you to easily pick up next year's
language.

Or this year's language...

(By the time you get out of this course, you should have learned
enough to teach yourself Java or C# easily.)

Embedded and
domain-specific languages

"Every program attempts to expand until it can read
mail. Those programs which cannot so expand are
replaced by ones which can."

-- Jamie Zawinski*

* Key developer: XEmacs and Netscape Navigator; owner/programmer/bartender,
DNA Lounge nightclub, San Francisco)

Embedded and
domain-specific languages

Likewise, every successful application grows until it
becomes a domain-specific programming
environment...

office apps (MSOffice/VBScript),

web browsers (JavaScript) and servers (servlets, PHP, ASP, etc.)

game engines (UnrealScript/QuakeC/...),

desktop environments (AppleScript, KDE/DCOP),

graphics and multimedia (the GIMP, Shockwave/Flash),

and of course text editors (Emacs)...

...and those applications which cannot so grow are
replaced by those which can.

When it comes time for you to develop a "real"
application, what are you going to do?

Evaluating competing
programming technologies

There's a lot of snake oil in programming tools.

Choosing the right tools can make a huge difference in
programmer productivity.

When it comes time to build a large project, how can
you evaluate programming technologies?

Vendors' claims?

The ill-informed, fad-obsessed technology press?

The opinion of your friends?

A broad understanding of languages is crucial to enable
you to judge for yourself.

