(DEsk: Bl

Guest Lecture #1

April 22,2002 “ ||||||||||||||||||’””"M”Hm"lm"
L

Dynamic and Static Types

1 Variables are containers
1 Vaues (objects) are stored in variables
1 Primitive values are also stored in variables

April 22,2002

Dynamic and Static Types

1 Assignment copies pointers

1 Methods are compile-time type checked
using stetic types.

1 Methods are run-time dispatched using
dynamic types.

1 E.g., dide 47 from Friday' s lecture

Who Am [?
1 Compute Science B.Sc. (Honors),.M.Sc.,

Ph.D., dl from University of Washington

1 Fifteen years as a devel oper and manager at
six different companies.

1 Shipped over ten rea products.
1 A lifetime love of programming |languages.
1 Currently on the UrbanSim project.

April 22, 2002

Dynamic and Static Types
1 Static typeis associated with thewariable

1 Dynamic type is associated with the object

Bdl homer = -

April 22, 2002

Dynamic and Static Types
1 Static methods are dispatched by stetic type
1 Constructors are dispatched by static type:

1 Findizers are dispatched by dynamic type




Interesting Questions
1 Where can this typing scheme go.wrong?

1 What does  super” do to the stetic and
dynamic types?

1 Can you imagine an  anti-super” keyword?

April 22, 2002

Question #2
1 “super” changes the effective dynamic type
of the object for a single method dispatch
1 “super” has no effect on stetic types

1 “static’ methods aways dispatch from the
effective dynamic type

April 22,2002

Exceptions

1 [slides 53 and 54 from Friday’ stecture]

1 “out of band” return value

1 Exceptions are objects

1 Exceptions are part of method signatures

1 throw new Exception( .. )

i oAU
catch ( Exception e ) { ..}

April 22, 2002

Question #1

1 Consider the up-cast:
Ball b;
CBalc=...;
b= (Bdll) c;

1 Consider the down-cast:
CBadll d;
Bele=...;

d = (CBadll) e

April 22, 2002

Question #3

1 The Beta language contains an “anti-super”
keyword named * inner”

April 22, 2002

Exceptions

i oAU
cxaiety (LY
ity (LY
finally { .. }

1 Should be caught or thrown, never ignored.
1 Catch where it can be handled




Exceptions

void minime () throws MeException {
.~ if( bad )
throw new MeException (“bad”) ;

void me() {
start destruct countdown() ;
try { open mojo(): .. minime(); ..
finally { close mojo();: }
stop destruct countdown () ;

}

April 22, 2002

Collections

1 Maps are a special case of collections which
uses keys to access values

1 Arrays are ordered maps using integer keys!

April 22,2002

Collections Interfaces

“
Sl

SortedSet

plus Comparator & Iteraor & Listlteraor

April 22, 2002

Collections

1 One of the fundamental programiming
activities|is collecting and organizing
things.

1 Coallections can:

— Be unordered, ordered, or sorted

— Contain duplicates or not

— Be mutable or immutable

- Have various performance characteristics

April 22, 2002

Ilterators

1 Iterating over an array:

for( int i = 0; i < a.size; i#+ )
a[il .bounce() ;

1 Abstracted iteration over a collection:

Iterator iter = collec.iterator();
while( iter.hasNext() ) {
Bounceable b =
(Bounceable) iter.next();
b.bounce () ;

}

April 22, 2002

Collections Classes

1 ArrayList, LinkedList

1 HashMap, IdentityHashMap,
LinkedHashMap, TreeMap

1 HashSet, TreeSet

1 BitSet

1 Stack

April 22, 2002



Collections Classes

1 Immutable Wrappers
1 Synchronization Wrappers

Collection c =
Collections.synchronizedCollection (me) ;
synchronized(c) {
Iterator i = c.iterator();
while (i.hasNext ())
foo (i.next());

April 22, 2002

Additional Classes and
Iterators

1 Iterator isnot restricted to collections (?)
il

— AVLTree

— CaselnsensistiveHashtable

— Combinelterator

— DemandMap

April 22,2002

Dynamic Class Loading

1 Add code to system at run-time:
1 Why?

1 string name = “cse34l.example.CBall”;
Class cls =
ClassLoader.classForName ( name ) ;
Object obj = cls.newlInstance();
Bounceable b = (Bounceable) obj;

April 22, 2002

Collections and lterators
Caveats

1 Hash-based collections are O(1)-and useful
but:
— Can change order when rehashed (grow/shrink)

— Possibly inaccessible if keys are mutable
complex objects

1 Lists are O(n)

April 22, 2002

Class Loading

1 Import java util.HashMap;

I.\-A'ao m = new HashMap();

1 Compile time determination of classesto
load.
1 Advantages?

April 22, 2002

Interesting Questions

1 Remove code at run-time?
1 Replace code at run-time?

April 22, 2002




References

1 References are dliases for variables
- Two variables become the same

1 C++ has references; Java does not

1 What differences does this make?

April 22, 2002

Memory

1 For small programs, the GC hides memory
issues, But for large programs...

1 How much memory does an object use?

1 What causes memory |eaks?

1 What is the memory allocetion algorithm?
1 What is the garbage collection agorithm?

April 22,2002

References

1 Objects are pass-pointers-by-value
Primitives are pass-by-value

1 Instance variables cannot escape
(valuesin instance varigbles still can)

1 Returning multiple values requires an extra
obj ect

1?7

April 22, 2002

Memory Control

1 javalang.ref

1 [strong reference]
1 SoftReference

1 WeakReference

1 PhantomReference

April 22, 2002




