
1

April 22, 2002 1

CSE 341CSE 341

Guest Lecture #1

April 22, 2002 2

Who Am I?Who Am I?

l Compute Science B.Sc. (Honors), M.Sc.,
Ph.D., all from University of Washington

l Fifteen years as a developer and manager at
six different companies.

l Shipped over ten real products.

l A lifetime love of programming languages.

l Currently on the UrbanSim project.

April 22, 2002 3

Dynamic and Static TypesDynamic and Static Types

l Variables are containers

l Values (objects) are stored in variables

l Primitive values are also stored in variables

42bart

homer

Ball

April 22, 2002 4

Dynamic and Static TypesDynamic and Static Types

l Static type is associated with the variable

l Dynamic type is associated with the object

Ball homer

Ball

April 22, 2002 5

Dynamic and Static TypesDynamic and Static Types

l Assignment copies pointers

l Methods are compile-time type checked
using static types.

l Methods are run-time dispatched using
dynamic types.

l E.g., slide 47 from Friday’s lecture

April 22, 2002 6

Dynamic and Static TypesDynamic and Static Types

l Static methods are dispatched by static type

l Constructors are dispatched by static type

l Finalizers are dispatched by dynamic type



2

April 22, 2002 7

Interesting QuestionsInteresting Questions

l Where can this typing scheme go wrong?

l What does “super” do to the static and
dynamic types?

l Can you imagine an “anti-super” keyword?

April 22, 2002 8

Question #1Question #1

l Consider the up-cast:
Ball b;
CBall c = …;
b = (Ball) c;

l Consider the down-cast:
CBall d;
Ball e = …;
d = (CBall) e;

April 22, 2002 9

Question #2Question #2

l “super” changes the effective dynamic type
of the object for a single method dispatch

l “super” has no effect on static types

l “static” methods always dispatch from the
effective dynamic type

April 22, 2002 10

Question #3Question #3

l The Beta language contains an “anti-super”
keyword named “inner”

April 22, 2002 11

ExceptionsExceptions

l [slides 53 and 54 from Friday’s lecture]

l “out of band” return value

l Exceptions are objects

l Exceptions are part of method signatures
l throw new Exception( … )

l try { … }
catch ( Exception e ) { … }

April 22, 2002 12

ExceptionsExceptions

l try { … }
catch( … ) { … }
catch( … ) { … }
finally { … }

l Should be caught or thrown, never ignored.

l Catch where it can be handled



3

April 22, 2002 13

ExceptionsExceptions

void minime() throws MeException {
… if( bad )

throw new MeException(“bad”);
}
void me() {

start_destruct_countdown();
try { open_mojo(); … minime(); … }
finally { close_mojo(); }
stop_destruct_countdown();

}

April 22, 2002 14

CollectionsCollections

l One of the fundamental programming
activities is collecting and organizing
things.

l Collections can:
– Be unordered, ordered, or sorted
– Contain duplicates or not
– Be mutable or immutable
– Have various performance characteristics

April 22, 2002 15

CollectionsCollections

l Maps are a special case of collections which
uses keys to access values

l Arrays are ordered maps using integer keys!

April 22, 2002 16

IteratorsIterators

l Iterating over an array:
for( int i = 0; i < a.size; i++ )

a[i].bounce();

l Abstracted iteration over a collection:
Iterator iter = collec.iterator();
while( iter.hasNext() ) {

Bounceable b =
(Bounceable) iter.next();

b.bounce();
}

April 22, 2002 17

Collections InterfacesCollections Interfaces

plus Comparator & Iterator & ListIterator

April 22, 2002 18

Collections ClassesCollections Classes

l ArrayList, LinkedList

l HashMap, IdentityHashMap,
LinkedHashMap, TreeMap

l HashSet, TreeSet

l BitSet

l Stack



4

April 22, 2002 19

Collections ClassesCollections Classes

l Immutable Wrappers

l Synchronization Wrappers
Collection c =
Collections.synchronizedCollection(mc);
synchronized(c) {

Iterator i = c.iterator();
while (i.hasNext())

foo(i.next());
}

April 22, 2002 20

Collections andCollections and IteratorsIterators
CaveatsCaveats

l Hash-based collections are O(1) and useful
but:
– Can change order when rehashed (grow/shrink)

– Possibly inaccessible if keys are mutable
complex objects

l Lists are O(n)

April 22, 2002 21

Additional Classes andAdditional Classes and
IteratorsIterators

l Iterator is not restricted to collections (?)

l http://www.javacollections.org/
– AVLTree

– CaseInsensistiveHashtable

– CombineIterator

– DemandMap

– …

April 22, 2002 22

Class LoadingClass Loading

l Import java.util.HashMap;
…
Map m = new HashMap();

l Compile time determination of classes to
load.

l Advantages?

April 22, 2002 23

Dynamic Class LoadingDynamic Class Loading

l Add code to system at run-time.

l Why?

l String name = “cse341.example.CBall”;
Class cls =
ClassLoader.classForName( name );

Object obj = cls.newInstance();
Bounceable b = (Bounceable) obj;

April 22, 2002 24

Interesting QuestionsInteresting Questions

l Remove code at run-time?

l Replace code at run-time?



5

April 22, 2002 25

ReferencesReferences

l References are aliases for variables
– Two variables become the same

l C++ has references; Java does not

l What differences does this make?

April 22, 2002 26

ReferencesReferences

l Objects are pass-pointers-by-value
Primitives are pass-by-value

l Instance variables cannot escape
(values in instance variables still can)

l Returning multiple values requires an extra
object

l ???

April 22, 2002 27

MemoryMemory

l For small programs, the GC hides memory
issues. But for large programs…

l How much memory does an object use?

l What causes memory leaks?

l What is the memory allocation algorithm?

l What is the garbage collection algorithm?

April 22, 2002 28

Memory ControlMemory Control

l java.lang.ref

l [strong reference]

l SoftReference

l WeakReference

l PhantomReference


