CSE 341 Final — June 13, 2002 — Answer Key

This exam is closed book and notes. 10 points per question — 130 points total.

1. Consider static vs. dynamic typing. Discuss one advantage of each.

In a statically typed language, the system is able to determine the type of each expression at compile time. This
usually requires that the programmer provide type declarations for each variable, although a few languages, such
as Miranda, also support type inference. In a dynamically typed language, the types of expressions (including
variables) are not known until runtime.

An advantage of static typing is that there is more checking at compile time — it is usually better to find
errors (such as type errors) earlier than later. Also, if the programmer provides declarations, these are machine-
checkable documentation. (Unlike comments, the compiler will flag an error if they become obsolete.)

An advantage of dynamic typing is that it is less work for the programmer, and better supports rapid prototyping,
in which decisions about the types of variables may change rapidly. Another advantage (OK, you only needed to
give one, but here’s another) is that it may be easier to implement heterogeneous data structures. For example,
in Scheme one can have a list of integers and strings, while in Miranda this can’t be done directly, but would
require a special user-defined type.

2. Suppose that we had a version of Miranda, called V-Miranda, that used call by valuerather than lazy evaluation.

Would V-Miranda offer referential transparency? Answer “yes,” “no,” or “more information needed,” and
explain why.
Yes, V-Miranda would offer referential transparency. Roughly, referential transparency means that equals can be
substituted for equals. For example, if we have defined that x=y+3, in a referentially transparent language such
as Miranda we can substitute y+3 for x anywhere in the program. This property continues to hold in V-Miranda
— lazy vs. call by value does not affect it, since it stems from the purely functional nature of the language (no
side effects) rather than the calling convention.

(As an aside — not expected in your answer, Miranda and V-Miranda will have different semantics, since there
are some programs that terminate correctly in Miranda, and that will give an error or not terminate in V-Miranda.
However, this property is separate from referential transparency.)



3. Consider the following program in an Algol-like language.

begin

i nteger n;

procedure p(k: integer);
begi n
k := k+10;
n := n+k;
print(n,Kk);
end;

n := 20;

p(n);

print(n);

end;

(a) What is the output when k is passed by value?
50, 30
50

(b) What is the output when Kk is passed by value-result?
50, 30
30

(c) What is the output when k is passed by reference?
60, 60
60



4. What does the following Java program print?

i mport java.awt. Point;
cl ass Test {
public static void main(String[] args) {
Point p = new Point (10, 20);

Systemout.println("before resetOne: p.x =" + p.x);
reset One(p);
Systemout.printin("after resetOne: p.x =" + p.Xx);

p = new Point (10, 20);

Systemout.println("before resetTwo: p.x =" + p.Xx);
reset Two(p);
Systemout.println("after resetTwo: p.x =" + p.Xx);
}
public static void resetOne(Point q) {
g.x = 0;
q.y = 0;

}

public static void reset Two(Point q) {
g = new Point(0,0);
}

}

before resetOne: p.x = 10
after resetOne: p.x =0

before reset Two: p.x = 10
after resetTwo: p.x = 10

5. Control structures in Java and Smalltalk.

(a) Compare how conditionalsare handled in Java and Smalltalk.

In Java, there is special language syntax for conditionals. In Smalltalk, there is no special syntax.
Rather, conditionals are provided using blocks and message sending (by sending the messages i f Tr ue: ,
i fFal se:,andi f True: i f Fal se: toaboolean with blocks as arguments.

(b) Compare how iterating through a collection is handled in Java and Smalltalk.
In Java, to support iterating through a collection, the collection providesani t er at or method that returns
an iterator over that collection. The iterator is a separate object that includes next and hasNext methods,
to return the next element in the collection and answer whether there are any more elements. It keeps track
of which element in the collection should be returned next. In Smalltalk, collections provide a method
do: that takes a block as an argument. The block is called with each element in the collection. A separate
iterator object is not required.



6. What is the principal problem with Java’s type system that Pizza is designed to solve? Include an example in
your description that illustrates the problem as it exists in Java, and that shows how it is solved by Pizza. (You
don’t need to write down code — just describe the example in English.)

The problem in Java is that there are no parameterized types. Thus, for the collection classes in Java (e.g. Set),
one can only declare that there is a collection of Objects, not a collection of Points, of Strings, etc. (Well, you
could declare separate collections for each type, but that would result in a lot of redundant code.) As a result,
even if the programmer is using a set of Points, the Java compiler doesn’t know this — only that the set contains
Objects. As a result, the programmer must usually include casts when extracting objects from collections,
resulting in less clear code.

Pizza solves this by providing parameterized types. For example, in Pizza one can declare a collection such as
Set <A>. This allows the programmer to declare a variable as being of type Set <Poi nt >, and the type system
will know that the elements in this set are of type Poi nt .

7. Discuss the primary reason inner classes are useful for defining iterators in Java.

An iterator is usually defined in terms of the specific data representation and other non-public members of a
collection class. Since an inner class can access non-public members of the containing class, inner classes offer
a clean, controlled way of exposing non-public members to a privileged class (in the absence of a keyword like
C++’s friend). Another benefit is keeping the global namespace from getting cluttered with iterator class names.
For example, the name Vect or | t er at or would only be known within the class Vect or .



8. Consider the following Smalltalk class definitions of three classes.

bj ect subcl ass: #CO assOne
i nst anceVari abl eNanes: '’
cl assVari abl eNanes: '’
pool Di cti onaries: '’

t est
Transcript show 'test - CassOne’.

Cl assOne subcl ass: #CO assTwo
i nst anceVari abl eNanmes: '’
cl assVari abl eNanes: '’
pool Di ctionaries: '’

t est
Transcript show ’'test - CassTwo’.
super test.
sel f snark.

snar k
Transcript show. ’snark - C assTwo’.

Cl assTwo subcl ass: #C assThree
i nst anceVari abl eNanes: '’
cl assVari abl eNanes: '’
pool Di ctionaries: '’

t est
Transcript show ’'test - CassThree'.
super test.

snar k
Transcript show. ’'snark - ClassThree’.

What is printed when each of the following expressions is evaluated?

(@) A assOne new test
test - Cl assOne

(b) A assTwo new test
test - ClassTwo
test - O assOne
snark - ClassTwo

(c) A assThree new test
test - O assThree
test - O assTwo
test - O assOne
snark - O assThree



9. Define a recursive Scheme function doubl e- | i st that takes a list of numbers as an argument, and returns
a new list of numbers, each twice the number in the original. For example, (doubl e-list " (1 2 3))
should return (2 4 6) . (This version should NOT use map.)

(define (double-list s)
(if (null?s)
()
(cons (* 2 (car s))
(doubl e-list (cdr s)))))

10. Define another version of doubl e-1i st that is NOT recursive, using map and | anbda.

(define (double-list s)
(map (I ambda (x) (* 2 x)) s))

11. Suppose we evaluate the following Scheme expressions:

(define
(define
(define
(define
(define

(1 2))
"(10 11 12))
(append x y))
(cdr x))
(cdr 2z))

OO N X

Draw a box-and-arrow diagram of the lists that X, y, z, a, and b are bound to, being careful that your diagram
clearly shows what parts of the lists are shared, if any.

D

X —7| I-‘———‘r[f:\/l




12. Consider the following function definitions in Scheme.

(define x 2)
(define y 3)

(define (octopus x)
(+ xy))

(define (squid x y)
(oct opus 10))

(define (mollusc x)
(lambda (y) (+ x y)))

(define (crab z)
((rol lusc 10) 2))

(define (conplicated x)
((rol lusc 10) x))

What do the following expressions evaluate to? (They all evaluate without error.)
@ (+ xy)
5

(b) (octopus 20)
23

(c) (squid 100 200)
13

(d) (crab 20)
30

(e) (conplicated 20)
30

13. True or False? (Circle one for each.)

(a) True or False: In both Smalltalk and Java, 3 is an instance of a class. False.
(b) True or False: Scheme, Java, and Smalltalk all pass parameters by reference. False.

(c) True or False: It is NOT possible to pass a function as a parameter in Scheme, because Scheme will
evaluate the function beforeit is passed. False.

(d) True or False: In Smalltalk, the programmer can modify methods of the built-in classes that come with the
system. True.

(e) True or False: In Java, the programmer can modify methods of the built-in classes that come with the
system. False.



