
CSE 341 Midterm Exam Sample Solutions Spring 2001

Name: Solutions

1

PART I, the night before

1) [8 pts] Implement a recursive functioncommon_prefix which takes two lists and returns the
longest list that is a prefix of both argument lists. It should use the built-in= function to
compare elements. The following are some example calls:

common_prefix([3, 4, 5], [3, 4, 6, 7]) → [3, 4]

common_prefix([3, 4, 5], [3, 4]) → [3, 4]

common_prefix([5, 3, 4], [3, 4, 5, 6, 7]) → []

fun common_prefix(x::xs, y::ys) =
if x=y then x::common_prefix(xs, ys) else []

| common_prefix(_, _) = []

2) a) [8 pts] Show how to implementfilter using reduce . (Use the versions of these
functions done in class.)

fun filter(pred, lst) =
reduce(fn(elem,rest)=>

if pred(elem) then elem::rest else rest,
[], lst)

b) [4 pts] Why are lexically scoped nested functions (which C lacks) critical in order to use
reduce to implementfilter ?

Otherwise, it would be very difficult for the argument function to reduce to refer to
pred in its body, since pred is a local variable of the lexically enclosing scope.

3) Consider the following polymorphic binary tree datatype declaration:

datatype 'a BTree =
Empty

| Node of {left:'a BTree, value:'a, right:'a BTree}

Consider a higher-order functionreduce_infix that takes a function, a base value, and a
binary tree, and visits all the nodes of the treein left-to-right infix order , calling the argument
function on each element value stored at the nodes, starting from the given base value. The
following is an example call ofreduce_infix on an example binary tree:

val t1 = Node{left=Node{left=Empty,value=”a”,right=Empty},
value=”b”,
right=Node{left=Empty,value=”c”,right=Empty}}

CSE 341 Midterm Exam Sample Solutions Spring 2001

2

val t2 = Node{left=Empty,
value=”e”,
right=Node{left=Empty,value=”f”,right=Empty}}

val t3 = Node{left=t1,value=”d”,right=t2}

(* concatenate all the strings in the tree *)

reduce_infix(fn(elem,prevs)=> prevs ^ elem, ””, t3)

(* evaluates to ”abcdef” *)

a) [4 pts] What is the most general type of thereduce_infix function?

('a * 'b -> 'b) * 'b * 'a BTree -> 'b

b) [10 pts] Implementreduce_infix .

fun reduce_infix(f, b, Empty) = b
| reduce_infix(f, b, Node{left,value,right}) =

let val l = reduce_infix(f, b, left)
val m = f(value, l)
val r = reduce_infix(f, m, right)

in r end

c) [7 pts] Usereduce_infix to define a functiontoList that constructs a list of all the
elements in the tree, in left-to-right infix order. (Note that this is not the most efficient way
to do this; a right-to-left reduction would be more suitable.)

fun toList(t) =
reduce_infix(fn(elem,prevs)=> prevs @ [elem], [], t)

d) [3 pts] Why is it hard to write a tail-recursive version ofreduce_infix ?

Because there are two recursive calls, and they can’t both be last.

CSE 341 Midterm Exam Sample Solutions Spring 2001

3

PART II, in class

4) a) [4 pts] For the following box-and-pointer diagram (where the boxes in the diagram are all
list cons cells), give asingle ML expression that evaluates to the data structure, with the
same sharing relationships. Hint: exploitlet .

let val shared = [4] in [3::shared, shared] end

b) [2 pt] For the above diagram, show how SML would print out the data structure.

[[3, 4], [4]]

c) [2 pt] What is the type of this data structure?

int list list

d) [8 pts] For the following sequence of ML expressions, illustrate using a box-and-pointer
diagram the final data structures resulting from evaluating the sequence, showing where the
variablest , x , z , a, b, cs , andmpoint into the final data structures. You should show
proper sharing of data structures, except that you may repeat the symbolnil multiple
times in your diagram.

val t = ("hi", 4.5, "there")

val (x,_,z) = t

val (a::b::cs) = x::[z,z]

val m = [x::a::cs, [], b::"bob"::"sue"::cs, nil]

nil

3

result

4

of expr

CSE 341 Midterm Exam Sample Solutions Spring 2001

4

5) Scheme has dynamic typing, while ML has static typing.

a) [3 pts] What is an advantage of Scheme’s dynamic typing?

It allows heterogeneous mixes of different types in a list, and also determining lazily
where

b) [3 pts] What is an advantage of ML’s static typing?

It checks for type errors early, without requiring any testing to find them.

c) [4 pts] If ML didn’t have polymorphic types, then its strong, static typing would be
unusably strict. C doesn’t have polymorphic types, but some people still find it usable.
What does C allow that ML doesn’t, which makes up for C’s lack of polymorphic types?

Casts and related features, which let the programmer work around the limitations
of the type system.

nil

"hi" 4.5 "there"

t

x

a

z

b

cs

m

nil nil

nil

"bob" "sue"

CSE 341 Midterm Exam Sample Solutions Spring 2001

5

6) [4 pts] Why is automatic garbage collection important to ensure type-safety, i.e., a system
where no uncaught type errors can happen? In other words, how could a system with explicit
allocation and deallocation (like C++’snew anddelete) break type safety?

If the programmer can free memory explicitly, it can create dangling pointers. If the
dangling pointer target is later reallocated to a data structure of a different type, the
original freed pointer can be used to access data of one type as if it were of a
different type.

7) [10 pts] In the MiniML interpreter project, evaluating a tuple expression required recursively
evaluating the list of element expressions. Show how to usemapto perform this evaluation and
then build aTupleValue containing the result of themap invocation, without any helper
functions, by providing the body expression of the followingevalExpr case:

...

| evalExpr(TupleExpr(exprs:Expr list),
env, global_env):Value =

let val values:Value list =
map(fn(expr)=>evalExpr(expr, env, global_env),

exprs)
in TupleValue(values) end

8) Lists are a basic data structure used in many high-level languages.

a) [3 pts] Why are lists typically manipulated by recursive functions, while arrays are typically
implemented by iterative loops?

Lists are a recursive datatype; all recursive data types are easily manipulated with
recursive functions having the same recursive structure as the datatype.

Arrays have no recursive structure, so loops over their indices are natural.

b) [3 pts] What two basic operations on ML lists are much faster than the analogous operation
on C arrays?

:: and tl

c) [2 pts] What basic operation is much faster on a C array than on an ML list?

random access indexing

9) [10 pts] For the following ML function, illustrate the process of type inference systematically.
Show the constraints introduced for each subexpression of the program, and show the final
inferred type.

fun f(a, b) =
if null(tl(b)) then a(hd(b)) + 1
else f(a, tl(b))

CSE 341 Midterm Exam Sample Solutions Spring 2001

6

Types of arguments and result:

a: 'a
b: 'b
res: 'res

Considering each expression in turn:

tl(b): 'b = 'd list

null(tl(b)): no change

hd(b): no change

a(hd(b)): 'a = 'd -> 'e

a(...) + 1: 'e = int, 'res = int

tl(b): no change

f(...): 'a = 'a, 'd list = 'b, 'res = 'res

Resulting values for type variables:

'a = 'd -> int
'b = 'd list
'res = int

Resulting type for “f”:

f: ('d -> int) -> 'd list -> int

Or in pretty form:

f: ('a -> int) -> 'a list -> int

