Pizza into Java:
Translating theory into practice

Martin Odersky
University of Karlsruhe

Abstract

Pizza is a strict superset of Java that incorporates three
ideas from the academic community: parametric polymor-
phism, higher-order functions, and algebraic data types.
Pizza is defined by translation into Java and compiles into
the Java Virtual Machine, requirements which strongly con-
strain the design space. Nonetheless, Pizza fits smoothly to
Java, with only a few rough edges.

1 Introduction

There is nothing new beneath the sun.
— Ecclesiastes 1:10

Java embodies several great ideas, including:
e strong static typing,
e heap allocation with garbage collection, and
e safe execution that never corrupts the store.

These eliminate some sources of programming errors and
enhance the portability of software across a network.

These great ideas are nothing new, as the designers of
Java will be the first to tell you. Algol had strong typing,
Lisp had heap allocation with garbage collection, both had
safe execution, and Simula combined all three with object-
oriented programming; and all this was well over a quarter
of a century ago. Yet Java represents the first widespread
industrial adoption of these notions. Earlier attempts exist,
such as Modula-3, but never reached widespread acceptance.

Clearly, academic innovations in programming languages
face barriers that hinder penetration into industrial practice.
We are not short on innovations, but we need more ways to
translate innovations into practice.

Pizza is a strict superset of Java that incorporates three
other ideas from the academic community:

Revised from a paper presented in Proc. 24th ACM
Symposium on Principles of Programming Languages,
Paris, France, January 1997.

© 1997 ACM. Permission to copy without fee all or
part of this material is granted, provided that the copies
are not made for direct commercial advantage, the
ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying
is by permission of the Association for Computing Ma-
chinery. To copy otherwise, or to republish, requires a
fee and/or specific permission.

Philip Wadler
University of Glasgow

e parametric polymorphism,
e higher-order functions, and
e algebraic data types.

Pizza attempts to make these ideas accessible by translat-
ing them into Java. We mean that both figuratively and
literally, because Pizza is defined by translation into Java.
Our requirement that Pizza translate into Java strongly con-
strained the design space. Despite this, it turns out that
our new features integrate well: Pizza fits smoothly to Java,
with relatively few rough edges.

Promoting innovation by extending a popular existing
language, and defining the new language features by trans-
lation into the old, are also not new ideas. They have proved
spectacularly successful in the case of C++.

Pizza and Java. Our initial goal was that Pizza should
compile into the Java Virtual Machine, or JVM. We consid-
ered this essential because the JVM will be available across
a wide variety of platforms, including web browsers and
special-purpose chips. In addition, we required that exist-
ing code compiled from Java should smoothly inter-operate
with new code compiled from Pizza. Among other things,
this would give Pizza programmers access to the extensive
Java libraries that exist for graphics and networking.

We did not originally insist that Pizza should translate
into Java, or that Pizza should be a superset of Java. How-
ever, it soon became apparent that the JVM and Java were
tightly coupled, and any language that compiles into the
JVM would lose little in efficiency — and gain much in clar-
ity — by translating into Java as an intermediate stage. A
corollary was that making Pizza a superset of Java imposed
few additional constraints on the design. The requirement
of smooth inter-operability amounts to insisting that the
translation of Pizza into Java is the identity for the Java
subset of Pizza.

Heterogenous and homogenous translations. We like
translations so much that we have two of them: a heteroge-
nous translation that produces a specialised copy of code for
each type at which it is used, and a homogenous translation
that uses a single copy of the code with a universal represen-
tation. Typically the heterogenous translation yields code
that runs faster, while the homogenous translation yields
code that is more compact.

The two translations correspond to two common idioms
for writing programs that are generic over a range of types.
The translations we give are surprisingly natural, in that
they are close to the programs one would write by hand

in these idioms. Since the translations are natural, they
help the programmer to develop good intuitions about the
operational behaviour of Pizza programs.

Mixtures of heterogenous and homogenous translation
are possible, so programmers can trade size for speed by ad-
justing their compilers rather than by rewriting their pro-
grams. We expect the best balance between performance
and code size will typically be achieved by using the het-
erogenous translation for base types and the homogenous
translation for reference types.

Related work. Pizza’s type system is based on a mixture
of Hindley-Milner type inference [DM82] and F-bounded
polymorphism [CCH'89], closely related to type classes
[WB89, Jon93]. There is also some use of existential types
[CW85, MP8S].

Superficially, Pizza types appear similar to the template
mechanism of C++ [Str91]. Both allow parameterized types,
both have polymorphic functions with implicit instantiation,
and both have similar syntax. However, the similarity does
not run deep. C++ templates are implemented by macro
expansion, such that all type checking is performed only
on the function instances, not on the template itself. In
the presence of separate compilation, type checking in C++
must be delayed until link time, when all instance types are
known. In contrast, Pizza types allow full type checking at
compile time.

Bank, Liskov, and Myers [BLM96] describe a polymor-
phic type system for Java, broadly similar to ours. The key
difference is that we translate our language into the existing
JVM, while they extend the JVM to support polymorphism.
We believe these two approaches have complementary ad-
vantages, and are both worthy of pursuit.

Ideas for translating higher-order functions into classes
belong to the folklore of the object-oriented community. A
codification similar to ours has been described by Laufer
[Lau95]. A facility similar to higher-order functions is pro-
vided by the anonymous classes proposed for the next ver-
sion of Java [Sun96a]. Our observations about visibility
problems appear to be new.

Status. We have a complete design for Pizza, including
type rules, as sketched in this paper. We consider the design
preliminary, and subject to change as we gain experience.

We have implemented EspressoGrinder, a compiler for
Java written in Java [OP95]. Interestingly, it was a com-
mercial client who approached us to add higher-order func-
tions to EspressoGrinder. We added this feature first, to the
client’s satisfaction, and are now at work adding the other
features of Pizza.

Structure of this report. To read this paper, you will
need a passing acquaintance with parametric polymorphism,
higher-order functions, and algebraic types (see, e.g. [BW88,
Pau91l, CW85]); and a passing acquaintance with Java (see,
e.g. [AG96, GJS96)).

This paper is organised as follows. Section 2 introduces
parametric polymorphism, Section 3 introduces higher-order
functions, and Section 4 introduces algebraic data types.
Each Pizza feature is accompanied by a description of its
translation into Java. Section 5 explores further issues con-
nected to the type system. Section 6 describes rough edges
we encountered in fitting Pizza to Java. Section 7 concludes.
Appendix A summarises Pizza syntax. Appendix B dis-
cusses formal type rules.

Example 2.1 Polymorphism in Pizza

class Pair<elem> {
elem x; elemy;
Pair (elem x, elem y) {this.x = x; this.y = y;}
void swap () {elemt =x; x =y; y = t;}

Pair<String> p = new Pair("world!", "Hello,”);

p.swap();
System.out.printIn(p.x + p.y);

Paircint> q = new Pair(22, 64);

q.swap();
System.out.println(q.x - q.y);

Example 2.2 Heterogenous translation of polymorphism
into Java

class Pair_String {
String x; String y;
Pair_String (String x, String y) {this.x = x; this.y = y;}
void swap () {Stringt = x; x =y; y = t;}

class Pair_int {
Int x; Inty;
Pair_int (int %, int y) {this.x = x; this.y = y;}
void swap () {intt =x;x=y;y =t;}

Pair_String p = new Pair_String("world!”, "Hello,”);
p.swap(); System.out.printin(p.x + p.y);

Pair_int ¢ = new Pair_int(22, 64);
q.swap(); System.out.println(q.x — q.y);

2 Parametric polymorphism

A set of integers is much the same as a set of characters,
sorting strings is much the same as sorting floats. Poly-
morphism provides a general approach to describing data or
algorithms where the structure is independent of the type
of element manipulated.

As a trivial example, we consider an algorithm to swap
a pair of elements, both of the same type. Pizza code for
this task appears in Example 2.1.

The class Pair takes a type parameter elem. A pair has
two fields x and y, both of type elem. The constructor Pair
takes two elements and initialises the fields. The method
swap interchanges the field contents, using a local variable t
also of type elem. The test code at the end creates a pair
of integers and a pair of strings, and prints

Hello,world!
42

to the standard output. (Here + is string concatenation.)
We consider two ways in which Java may simulate poly-

morphism. The first method is to macro expand a new ver-

sion of the Pair class for each type at which it is instantiated.

Example 2.3 Homogenous translation of polymorphism
into Java

class Pair {
Object x; Object y;
Pair (Object x, Object y) {this.x = x; this.y = y;}
void swap () {Objectt =x; x =y; y = t;}

class Integer {
int i;
Integer (int i) { this.i=1i; }
int intValue() { return i; }

Pair p = new Pair((Object)”world!”, (Object)”Hello,”);

p.swap();
System.out.println((String)p.x + (String)p.y);

Pair ¢ = new Pair((Object)new Integer(22),
(Object)new Integer(64));

q.swap();

System.out.printin(((Integer)(q.x)).intValue() —

((Integer)(q.y)).intValue());

We call this the heterogenous translation, and it is shown in
Example 2.2.

The appearance of parameterised classes Pair<String>
and Pair<int> causes the creation of the expanded classes
Pair_String and Pair_int, within which each occurrence of the
type variable elem is replaced by the types String and int,
respectively.

The second method is to replace the type variable elem by
the class Object, the top of the class hierarchy. We call this
the homogenous translation, and it is shown in Example 2.3.

The key to this translation is that a value of any type
may be converted into type Object, and later recovered. Ev-
ery type in Java is either a reference type or one of the eight
base types, such as int. Each base type has a correspond-
ing reference type, such as Integer, the relevant fragment of
which appears in Example 2.3.

If v is a variable of reference type, say String, then it
is converted into an object o by widening (Object)s, and
converted back by narrowing (String)o. If v is a value
of base type, say int, then it is converted to an object o
by (Object)(new Integer(v)), and converted back by ((Inte-
ger)o).intValue(). (In Java, widening may be implicit, but
we write the cast (Object) explicitly for clarity.)

Java programmers can and do use idioms similar to
the heterogenous and homogenous translations given here.
Given the code duplication of the first, and the lengthy con-
versions of the second, the advantages of direct support for
polymorphism are clear.

2.1 Bounded parametric polymorphism

Subtyping plays a central role in object-oriented languages,
in the form of inheritance. In Java, single inheritance is in-
dicated via subclassing, and multiple inheritance via inter-
faces. Thus, Pizza provides bounded polymorphism, where
a type variable may take on any class that is a subclass of a
given class, or any class that implements a given interface.

Example 2.4 Bounded polymorphism in Pizza

interface Ord<elem> {
boolean less(elem o);

class Pair<elem implements Ord<elem>> {
elem x; elemy;
Pair (elem x, elem y) { this.x = x; thisy = y; }
elem min() {if (x.less(y)) return x; else return y; }

class OrdInt implements Ord<OrdInt> {
int i;
OrdInt (int i) { this.i = i; }
int intValue() { return i; }
public boolean less(OrdInt o) { return i < o.intValue(); }

}

Pair<OrdInt> p = new Pair(new OrdInt(22),
new OrdInt(64));
System.out.println(p.min().intValue());

Pizza also allows interfaces to be parameterised, just as
classes are. Parameterised interfaces allow one to express
precisely the type of operations where both arguments are
of the same type, a notoriously hard problem for object-
oriented languages [BCC™ 96].

To demonstrate, we modify our previous example to find
the minimum of a pair of elements, as shown in Example 2.4.

The interface Ord is parameterised on the type elem,
which here ranges over all types, and specifies a method
less with an argument of type elem.

The class Pair is also parameterised on the type elem, but
here elem is constrained so to be a type that implements
the interface Ord<elem>. Note that elem appears both as
the bounded variable and in the bound: this form of recur-
sive bound is well known to theorists of object-oriented type
systems, and goes by the name of F-bounded polymorphism
[CCH*89]. The method min is defined using the method
less, which is invoked for object x of type elem, and has ar-
gument y also of type elem. The class OrdInt is similar to
the class Integer, except that it also implements the inter-
face Ord<OrdInt>. Hence, the class OrdInt is suitable as a
parameter for the class Pair. The test code at the end cre-
ates a pair of ordered integers, and prints the minimum of
the two to the standard output. The exercise of defining Or-
dInt is unavoidable, because Java provides no way for a base
type to implement an interface. This is one of a number of
points at which the Java designers promote simplicity over
convenience, and Pizza follows their lead.

Again, we consider two ways in which Java may simu-
late bounded polymorphism. The heterogenous translation,
again based on macro expansion, is shown in Example 2.5.

The appearance of the parameterised class Pair<OrdInt>
and interface Ord<OrdInt> causes the creation of the ex-
panded class Pair_OrdInt and interface Ord_OrdInt, within
which each occurrence of the type variable elem is replaced
by the type OrdInt. Once the code is expanded, the interface
Ord_OrdInt plays no useful role, and all references to it may
be deleted.

The homogenous translation, again based on replacing

Example 2.5 Heterogenous translation of bounded poly-
morphism into Java

interface Ord_OrdInt {
boolean less(OrdInt o);
}

class Pair_OrdInt {
OrdInt x; Ordint y;
Pair_OrdInt (OrdInt x, OrdInt y) { this.x = x; this.y =vy; }
OrdInt min() {if (x.less(y)) return x; else return y; }

class OrdInt implements Ord_OrdInt {

int i;

Ordint (int i) { this.i = i; }

int intValue() { return i; }

boolean less(OrdInt o) { return i < o.intValue(); }
}

Pair_OrdInt p = new Pair_OrdInt(new OrdInt(22),
new OrdInt(64));
System.out.printin(p.min().intValue());

elem by some fixed type, is shown in Example 2.6. The
unbounded type variable elem in the interface Ord is replaced
by the class Object, the top of the class hierarchy. The
bounded type variable elem in the class Pair is replaced by
the interface Ord, the homogenous version of its bound.

In the homogenous version, there is a mismatch between
the type of less in the interface Ord, where it expects an
argument of type Object, and in the class OrdInt, where it
expects an argument of type Ordint. This is patched in
the interface Ord renaming less to less_Ord; and in the class
OrdInt by adding a ‘bridge’ definition of less_Ord in terms of
less. The ‘bridge’ adds suitable casts to connect the types.
Suitable casts are also added to the test code.

Again, Java programmers can and do use idioms like
the above. The idiomatic Java programs are slightly sim-
pler: the useless interface Ord_OrdInt can be dropped from
the heterogenous translation, and less and less_Ord can be
merged in the homogenous translation. Nonetheless, the
original Pizza is simpler and more expressive, making the ad-
vantages of direct support for bounded polymorphism clear.

2.2 Arrays

Arrays are the classic example of parametric polymorphism:
for each type elem there is the corresponding array type
elem[]. Nonetheless, fitting Java arrays with Pizza poly-
morphism poses some problems.

As a trivial example, we consider rotating the entries of
an array, the Pizza code for which appears in Example 2.7.
The method rotate applies to arrays of any element type.
Whereas before <elem> was used as an (explicitly instanti-
ated) parameter to a class, here it is used as an (implicitly
instantiated) parameter to a method. The two calls to ro-
tate instantiate it to String and int, respectively, and the
test code prints Hello world! and 2 3 4 1. (In Java, a static
method corresponds to a traditional function call, and is
invoked by naming the class rather than by referencing an
instance.)

Example 2.6 Homogenous translation of bounded poly-
morphism into Java

interface Ord {
boolean less_Ord(Object o);
}

class Pair {
Ord x; Ord y;
Pair (Ord x, Ord y) { this.x = x; this.y = y; }
Ord min() {if (x.less_Ord(y)) return x; else return y; }

class OrdInt implements Ord {
int 1;
OrdInt (int i) { this.i =1i; }
int intValue() { return i; }
boolean less(OrdInt o) { return i < o.intValue(); }
boolean less_Ord(Object o) {
return this.less((OrdInt)o); }

}

Pair p = new Pair (new OrdInt(22), new OrdInt(64));
System.out.println(((OrdInt)(p.min())).intValue());

The heterogenous translation is straightforward and
won’t be further treated here, but the homogenous trans-
lation raises some interesting issues.

Naively, we might expect to translate the type elem[] as
Object[]. This works fine when elem is a reference type like
String, since it is easy to coerce from String[]| to Object[]
and back. But it falls flat when elem is a base type like int,
since the only way to coerce from int[| to Object[] is to
copy the whole array. We reject coercion based on copying
for two reasons. First, copying is too expensive: Pizza, like
Java, follows the principle that all coercions should occur in
constant time, irrespective of the size of the coerced data.
Second, copying loses the semantics of arrays: an update of
a formal array parameter must also affect the actual array.

The solution adopted is to introduce a new type Array,
shown in Example 2.8, to act as a wrapper around the Java
array. The abstract class Array supports operations to find
the length of the array, to get the object at index i, and to
set index i to contain object o. Two subclasses are given, one
where the array is implemented as an array of objects, and
one where the array is implemented as an array of integers.
Not shown are the six other subclasses corresponding to the
six other base types of Java.

The homogenous translation of Example 2.7 is shown in
Example 2.9. Occurrences of the type elem[| are replaced
by the type Array, and expressions to find the length, or get
or set elements, of arrays of type elem[] are replaced by the
corresponding method calls of class Array. Occurrences of
the type elem on its own are replaced by Object, just as in
the naive translation. In the test code, the arrays of types
String[] and int[] are coerced to type Array by calls to the
constructors Array_Object and Array_int respectively.

Arrays, subtyping, and polymorphism. The Java design-
ers took some pains to mimic parametric polymorphism for
arrays via subtyping. For instance, since String is a subtype
of Object they make String[| a subtype of Object[|. This
requires extra run-time checks to ensure soundness: an ar-

Example 2.7 Polymorphic arrays in Pizza.

class Rotate {
static <elem> void rotate(elem[] x) {
elem t = x[0];
for (inti = 0; i < x.length-1; i++) { x[i] = x[i+1]; }
x[x.length] = t;

}

String[] u = {"world!", "Hello" };
Rotate.rotate(u);
System.out.printIn(u[0]+" " +u[1]);

int[]v = {1,234}
Rotate.rotate(v);
System.out.println(v[0]+" " +v[1]+" "+v[2]+" "+V[3]);

Example 2.8 Utility arrays in Java.

abstract class Array {
int length();
Object get(int i);
void set(int i, Object o);

}

class Array_Object extends Array {
Object[] x;
Array_Object(Object[| x) { this.x = x; }
int length() { return x.length; }
Object get(int i) { return x[i]; }
void set(int i, Object o) { x[i] = o; }

}

class Array_int extends Array {
int[] x;
Array_int(int[] x) { thisx = x; }
int length() { return x.length; }
Object get(int i) { return new Integer(x[i]); }
void set(int i, Object o) { x[i] = ((Integer)o).intValue(); }

ray is labeled with its run-time type, and assignment to an
array checks compatibility with this type. Thus, a String[|
array actual may be passed to an Object| | formal, and any
assignment within the procedure is checked at run-time to
ensure that the assigned element is not merely an Object but
in fact a String.

Pizza uses instantiation, not subtyping, to match String]]
to elem[], and so it is tempting to eliminate any notion of
subtyping between arrays, and hence eliminate the need for
run-time checks. Alas, since Pizza compiles into the Java
Virtual Machine, the checks are unavoidable. We therefore
retain the subtyping relation between arrays in Pizza, which
is necessary for Pizza to be a superset of Java. This mis-
match between languages is ironic: Java supports polymor-
phic arrays as best it can, and as a result Pizza must offer
less good support for them.

Array creation. The homogenous translation for array
creation is problematic. Consider the phrase new elem|size],
where elem is a type variable and size is an integer. At first

Example 2.9 Homogenous translation of polymorphic ar-
rays into Java.

class Rotate {
static void rotate(Array x) {
Object t = x.get(0);

for (int i = 0; i < x.length()-1; i++) { x.set(i,x.get(i+1)); }

x.set(x.length(),t);

}

String[] u = {"world!", "Hello"};
Rotate.rotate(new Array_Object(u));
System.out.printIn(u[0]+" " +u[1]);

int[]v = {1,234}
Rotate.rotate(new Array_int(v));
System.out.printIn(v[0]+" " +v[1]+" "+v[2]+" "+v[3]);

blush, the translation new Object[size] might seem sensible,
but a moment of thought shows this fails for base types,
since they are allocated differently. An additional moment
of thought shows that it also fails for reference types. For
instance, if elem is String, then the result is an array of
objects that all happen to be strings, and there is no way in
Java to cast this to an array of strings.

The remaining alternative is to pass explicit type infor-
mation around at run-time. The current version of Java
makes this depressingly difficult: one may at run-time ex-
tract a representation of the type of an object, but one may
not use this to create an array of that type. New ‘reflection’
facilities for the next version of Java solve this problem, and
may cause us to reconsider our choice [Sun96b].

For now, we simply prohibit polymorphic array creation.
In its place, one may use higher-order functions, passing a
function that explicitly creates the array. This is analogous
to the passing of type parameters, where instead of implicitly
passing a parameter representing the type we explicitly pass
a function to create an array of that type. Higher-order
functions are the subject of the next section.

3 Higher-order functions

It can be convenient to treat functions as data: to pass them
as arguments, to return them as results, or to store them in
variables or data structures. Such a feature goes by the
name of higher-order functions or first-class functions.

The object-oriented style partly supports higher-order
functions, since functions are implemented by methods,
methods are parts of objects, and objects may themselves
be passed, returned, or stored. Indeed, we will implement
higher-order functions as objects. But our translation will
be rather lengthy, making clear why higher-order functions
are sometimes more convenient than objects as a way of
structuring programs.

The body of a function abstraction may refer to three
sorts of variables:

o formal parameters declared in the abstraction header,
o free variables declared in an enclosing scope, and

o instance variables declared in the enclosing class.

Example 3.1 Higher-order functions in Pizza.

class Radix {
intn=0;
(char)—boolean radix(int r) {
return fun (char c)—boolean {
n++; return 0’ <= c && ¢ < '0'+r;
b

}

String test () {
(char)—boolean f = radix(8);
return f('o’)+" ”+f(’9')+" "in:

All three sorts of variable appear in Example 3.1.

In the body of the abstraction, c is a formal parameter,
r is a free variable, and n is an instance variable. The body
returns true if the character ¢ represents a digit in radix
r, and increments n each time it is called. Thus, calling
new Radix().test() returns "true false 2".

In Java, the variable this denotes the receiver of a method
(it is called self in some other object-oriented languages).
The receiver of an abstraction is the same as the receiver
of the method within which it appears; so this and instance
variables follow a static scope discipline with regard to ab-
stractions.

In general, the function type

(t1, ..., tn) — to

denotes a function with a result of type to and argument of
types ti, ..., t,. Here to, but not ¢1,...,t,, may be void,
and n > 0. The function abstraction

fun (¢; =1, s tn Tn) — to S
denotes a function of the above type with variables
Z1,...,%n as its formals, and statement s as its body.

Given Java’s syntactic tradition, one might expect the
notation to(t1,...,t,) for function types. This alternate
notation was rejected for two reasons. First, functions
that return functions become unnecessarily confusing. Con-
sider a function call f(i)(c) where i is an int and c is a
char. What is the type of f2 In our notation it is sim-
ply (int)—(char)—boolean. In the alternate notation, it is
(boolean(char))(int) and the reader must decode the rever-
sal of order. Second, an omitted semicolon can lead to a
confused parse and a perplexing error message. Compare
f(a); x=y; where f(a) is a method call and x=y is an as-
signment, with f(a) x=y where f(a) is a type, x is a newly
declared variable and =y is an initialiser.

Formal parameters are passed by value, so any updates
to them are not seen outside the function body; but instance
variables are accessed by reference, so any updates are seen
outside the function body. This is just as in Java meth-
ods. What about free variables? Because Java provides no
reference parameters, it would be most convenient to treat
these as passed by value, just as formal parameters. Passing
free variables by reference is also possible, but requires that
the variables be implemented as single-element arrays. Our
current implementation of closures conceptually passes vari-
ables by reference, but contains a conservative analysis that

Example 3.2 Heterogenous translation of higher-order
functions into Java.

abstract class Closure_CB {
abstract boolean apply_CB (char c);

}

class Closure_1 extends Closure_CB {
Radix receiver;
intr;
Closure_1 (Radix receiver, int r) {
this.receiver = receiver; this.r = r;

boolean apply_CB (char c) {
return receiver.apply_1(r, c);
}

}

class Radix {
intn=0;
boolean apply_1 (int r, char ¢) {
n++; return ‘0’ <=c && ¢ < '0'+r;

}
Closure_CB radix(int r) {
return new Closure_1 (this, r);

String test () {
Closure_CB f = radix(8);
return f.apply_CB('0")+" *+f.apply_CB('9")+" " +n;
}
}

determines whether variables might possibly be assigned to
while captured in a closure. If a free variable is known to
be immutable for the duration of a closure the more effi-
cient value passing scheme is used. This choice was one of
the more finely balanced, however, as there are also good
reasons to pass all free variables by value.

3.1 Heterogenous translation

‘We have found that while some Java programmers have dif-
ficulty understanding the notion of higher-order functions,
they find it easier to follow once the translation scheme has
been explained. We explain the heterogenous translation
scheme by example, but it should be clear how it works in
the general case.

The heterogenous translation introduces one abstract
class for each function type in a program, and one new class
for each function abstraction in a program. The abstract
class captures the type of a higher-order function, while the
new class implements a closure.

The heterogenous translation of Example 3.1 is shown in
Example 3.2.

First, each function type in the original introduces an ab-
stract class in the translation, specifying an apply method
for that type. Thus, the function type (char)—boolean in
the original introduces the abstract class Closure_CB in the
translation. This specifies a method apply_CB that expects
an argument of type char and returns a result of type boolean.

Second, each function abstraction in the original intro-
duces a class in the translation, which is a subclass of the

class corresponding to the function type. Thus, the one
function abstraction in radix introduces the class Closure_1
in the translation, which is a subclass of Closure_.CB. The
apply method for the type apply_-CB calls the apply method
for the abstraction apply_1.

It is necessary to have separate apply methods for each
function type (e.g., apply_-CB) and for each abstraction (e.g.,
apply_1). Each function type defines an apply method in the
closure (so it is accessible wherever the function type is ac-
cessible), whereas each abstraction defines an apply method
in the original class (so it may access private instance vari-
ables).

3.2 Homogenous translation

Functions exhibit parametric polymoprhism in their argu-
ment and result types, and so the function translation has
both heterogenous and homogenous forms. Whereas the
heterogenous translation introduces one class for each clo-
sure, the homogenous translation represents all closures as
instances of a single class. While the heterogenous transla-
tion represents each free variable and argument and result
with its correct type, the homogenous translation treats free
variables and arguments as arrays of type Object and re-
sults as of type Object. Thus, the homogenous translation is
more compact, but exploits less static type information and
so must do more work at run time. We omit an example of
this translation, as it is lengthy but straightforward.

4 Algebraic types

The final addition to Pizza is algebraic types and pattern
matching. Object types and inheritance are complementary
to algebraic types and matching. Object types and inher-
itance make it easy to extend the set of constructors for
the type, so long as the set of operations is relatively fixed.
Conversely, algebraic types and matching make it easy to
add new operations over the type, so long as the set of con-
structors is relatively fixed. The former might be useful
for building a prototype interpreter for a new programming
language, where one often wants to add new language con-
structs, but the set of operations is small and fixed (evaluate,
print). The latter might be useful for building an optimising
compiler for a mature language, where one often wants to
add new passes, but the set of language constructs is fixed.

An algebraic type for lists of characters is shown in Ex-
ample 4.1. The two case declarations introduce constructors
for the algebraic type: Nil to represent the empty list; and
Cons to represent a list cell with two fields, a character head,
and a list tail. The method append shows how the switch
statement may be used to pattern match against a given
list. Again there are two cases, for Nil and for Cons, and the
second case binds the freshly declared variables x and xs to
the head and tail of the list cell. The test code binds zs to
the list Cons(’a’,Cons(’b’,Cons(’c’,Nil))).

The label for a case contains type declarations for each of
the bound variables, as in Cons(char head, list tail). We might
have chosen a syntax that omits these types, since they can
be inferred from the type of the case selector, but we decided
to retain them, to maintain the convention that every newly
introduced variable is preceded by its type. Further, doing
so eliminates any possible confusion between a variable and
a constructor of no arguments. (This possible confusion is a
well-known problem in functional languages. Miranda and

Example 4.1 Algebraic types in Pizza

class List {
case Nil;
case Cons(char head, List tail);
List append (List ys) {
switch (this) {
case Nil:
return ys;
case Cons(char x, List xs):
return Cons(x, xs.append(ys));

}
}
}

List zs = Cons('a’,Cons(’b’,Nil)).append(Cons(’c’,Nil));

Haskell treat it by requiring variables and constructors to be
lexically distinct, the former beginning with a small letter
and the latter with a capital.)

In Java, a missing break causes control to fall through
to the following case, which is a source of frequent errors.
Pizza, being a superset of Java, is stuck with this design.
However, it makes no sense to fall into a case that introduces
new bound variables, so we have a good excuse to do the
right thing and flag such cases as erroneous at compile time.

The translation from Pizza to Java is shown in Exam-
ple 4.2. The translated class includes a tag indicating which
algebraic constructor is represented. Each case declaration
introduces a subclass with a constructor that initialises the
tag and the fields. The switch construct is translated to a
switch on the tag, and each case initialises any bound vari-
ables to the corresponding fields.

If xs is a list, the notations xs instanceof Nil, xs instanceof
Cons, ((Cons)xs).head and ((Cons)xs).tail are valid in Pizza,
and they require no translation to be equally valid in Java.

As a final demonstration of the power of our techniques,
Example 4.3 demonstrates a polymorphic algebraic type
with higher-order functions. Note the use of nested pattern
matching in zip, and the use of the phrase to introduce
B as a type variable in map. We invite readers unconvinced
of the utility of Pizza to attempt to program the same func-
tionality directly in Java.

5 Typing issues

Pizza uses a mixture of explicit and implicit polymorphism,
in that types of variables and methods are given explicitly
where they are declared, but instantiated implicitly where
they are used, in a way that corresponds to the Hindley-
Milner type system [DM82]. Type variables range over sub-
types of one or more types, giving us bounded polymorphism
[CCH*89, BTCGS91], and since the type variable may re-
cursively appear in its own bound we have F-bounded poly-
morphism [CCH'89, BTCGS91]. The mixture of implicit
instantiation with F-bounded polymorphism resembles type
classes as used in Haskell, and may be implemented using
similar techniques [WB89, Oho92, Jon93].

Building on this work, the major remaining difficulties in
the design of Pizza’s type system are to integrate subtyping
with parametric polymorphism, and to integrate static and
dynamic typing.

Example 4.2 Translation of algebraic types into Java

class List {
final int Nil_tag = 0;
final int Cons_tag = 1;
int tag;
List append (List ys) {
switch (this.tag) {
case Nil_tag:
return ys;
case Cons_tag:
char x = ((Cons)this).head;
List xs = ((Cons)this).tail;
return new Cons(x, xs.append(ys));
}
}
}

class Nil extends List {

Nil() {
this.tag = Nil_tag;
}

}

class Cons extends List {
char head;
List tail;
Cons(char head, List tail) {
this.tag = Cons_tag;
this.head = head; this.tail = tail;
}
}

List zs = new Cons(’a’,new Cons(’b’,new Nil()))
.append(new Cons(’c’,new Nil()));

5.1 Integrating Subtyping and Parametric
Polymorphism

It is not entirely straightforward to combine subtyping with
implicit polymorphism of the sort used in Pizza.

Subtyping should not extend through constructors. To
see why, consider Example 5.1. Since String is a subtype of
Object, it seems natural to consider Cell<String> a subclass of
Cell<Object>. But this would be unsound, as demonstrated
in the test code, which tries to assign an Integer to a String.
Pizza avoids the problem by making the marked line illegal:
Cell<String> is not considered a subtype of Cell<Object>, so
the assignment is not allowed.

A common approach to subtyping is based on the prin-
ciple of subsumption: if an expression has type A, and A is
a subtype of B, then the expression also has type B. Sub-
sumption and implicit polymorphism do not mix well, as is
shown by considering the expression

new Cell("Hello™)

Clearly, one type it might have is Cell<String>. But since
String is a subtype of Object, in the presence of subsump-
tion the expression "Hello” also has the type Object, and so
the whole expression should also have the type Cell<Object>.
This type ambiguity introduced by subsumption would be
fine if Cell<String> were a subtype of Cell<Object>, but we’ve
already seen why that should not be the case.

Example 4.3 Polymorphism, higher-order functions, and
algebraic types

class Pair<A,B> {
case Pair(A fst,B snd);

}

class List<A> {
case Nil;
case Cons(A head, List<A> tail);
 List map ((A)—B f) {
switch (this) {
case Nil:
return Nil;
case Cons(A x, List<A> xs):
return Cons(f(x), xs.map(f));

}

 List<Pair<A,B>> zip (List ys) {
switch (Pair(this,ys)) {
case Pair(Nil,Nil):
return Nil;
case Pair(Cons(A x, List<A> xs),
Cons(B vy, List ys)):
return Cons(Pair(x,y), xs.zip(ys));

Moreover, there is no F-bounded type which subsumes
both Cell<String> and Cell<Object>. To be sure, it is possible
to generalize F-bounded polymorphism so that such a type
would exist. For instance, if we allow lower as well as upper
bounds for type variables we would find that the type scheme

Va . String extends a = Cell<a>

contains both Cell<String> and Cell<Object> as instances. It
is possible to come up with type systems that allow these
more general constraints [AW93, ESTZ95], but there remain
challenging problems in the areas of efficiency of type check-
ing and user diagnostics. It seems that more research is
needed until systems like these can be applied in mainstream
languages.

So, we eschew subsumption and require that type vari-
ables always match types exactly. To understand the con-
sequences of this design, consider the class in Example 5.2
and the following ill-typed expression:

Subsume.choose(true, "Hello”, new Integer(42))

One might assume that since String and Integer are sub-
types of Object, this expression would be well-typed by tak-
ing elem to be the type Object. But since Pizza uses exact
type matching, this expression is in fact ill-typed. It can be
made well-typed by introducing explicit widening casts.

Subsume.choose(true, (Object)”Hello™”,
(Object)(new Integer(42)))

Interestingly, Java does not have subsumption either.
For a simple demonstration, consider the following condi-
tional expression.

b 7 "Hello” : new Integer(42)

Example 5.1 Subtyping and parameterised types

class Cell<elem> {
elem x;
Cell (elem x) { this.x = x; }
void set(elem x) { this.x = x; }
elem get() { return x; }

}

Cell<String> sc = new Cell("Hello");
Cell<Object> oc = sc; // illegal
oc.set(new Integer(42));

String s = sc.get();

Example 5.2 Examples related to subsumption

class Subsume {
static <elem> elem choose(boolean b, elem x, elem y) {
if (b) return x; else return y;

static Object choosel(boolean b, Object x, Object y) {
if (b) return x; else return y;

static <elemx extends Object, elemy extends Object>
Object choose2(boolean b, elemx x, elemy y) {
if (b) return x; else return y;

By subsumption, this expression should have type Object,
since both Integer and String are subtypes of Object. How-
ever, in Java this expression is ill-typed: one branch of the
conditional must be a subtype of the other branch.

Java does however allow a limited form of subsumption
for method calls, in that the type of the actual argument
may be a subtype of the type of the formal, and therefore
Pizza must also allow it. Fortunately, this limited form of
subsumption can be explained in terms of bounded poly-
morphism. Consider the following expression:

Subsume.choosel(true, "Hello”, new Integer(42))

This is well-typed in both Java and Pizza, because the actual
argument types String and Integer are implicitly widened to
the formal argument type Object. Note that the behaviour
of choosel is mimicked precisely by choose2, which allows
two actual arguments of any two types that are subtypes
of Object, and which always returns an Object. Thus, the
methods choosel and choose2 are equivalent to each other
in that a call to one is valid exactly when a call to the other
is; but neither is equivalent to choose.

This equivalence is important, because it shows that
bounded polymorphism can be used to implement the form
of subsumption found in Pizza. All that is necessary is to
complete each function type, by replacing any formal argu-
ment type A which is not a type variable by a new quan-
tified type variable with bound A. A similar technique to
model subtyping by matching has been advocated by Bruce
[Bru97].

(Details of completion are described in the appendix.)

Example 5.3 Existentially quantified type variables in pat-
terns.

class List<A> {

boolean equals(Object other) {
if (other instanceof List) {
switch Pair(this, (List)other) {

case Pair(Nil, Nil):
return true;

case Pair(Cons(A x, List<A> xs),

Cons(B y, List ys)):

return x.equals(y) && xs.equals(ys);

default:
return false;

} else return false;

}
}

5.2 Integrating Dynamic Typing

Java provides three expression forms that explicitly mention
types: creation of new objects, casting, and testing whether
an object is an instance of a given class. In each of these
one mentions only a class name; any parameters of the class
are omitted.

For example, using the polymorphic lists of Example 4.3,
the following code fragment is legal, though it will raise an
error at run-time.

List<String> xs = Cons("a"”, Cons("b", Cons("c”, Nil)));
Object obj = (Object)xs;
int x = ((List)obj).length();

Why say (List) rather than (List<String>)? Actually, the
latter is more useful, but it would be too expensive to im-
plement in the homogenous translation: the entire list needs
to be traversed, checking that each element is a string.

What type should be assigned to a term after a cast? In
the example above, (List)obj has the existential type

Ha.List<a>.

Existential types were originally introduced to model ab-
stract types [CW85, MP88|, but there is also precedence to
their modeling dynamic types [LM91].

Figure 5.3 illustrates how existentilly qualified patterns
can be used to define an equals method for lists. (In Java,
all classes inherit an equals method from class Object, which
they may override.) The method is passed an argument
other of type Object, and a run-time test determines whether
this object belongs to class List. If so, then it has type
List for an arbitrary type B. Hence the code must be
valid for any type B, which is indicated by adding the quanti-
fier to the pattern match. Note that the syntax exploits
the logical identity between (3X.P) — @ and VX.(P — @),
so that angle brackets can always be read as universal quan-
tification.

Type checking existential typesis straightforward [LO94].
The type checker treats existentially bound variables as fresh
type constants, which cannot be instantiated to anything.

(Details of existentials are described in the appendix.)

6 Rough edges

There are surprisingly few places where we could not achieve
a good fit of Pizza to Java. We list some of these here: cast-
ing, visibility, dynamic loading, interfaces to built-in classes,
tail calls, and arrays.

Casting. Java ensures safe execution by inserting a run-
time test at every narrowing from a superclass to a subclass.
Pizza has a more sophisticated type system that renders
some such tests redundant. Translating Pizza to Java (or
to the Java Virtual Machine) necessarily incurs this modest
extra cost.

Java also promotes safety by limiting the casting opera-
tions between base types. By and large this is desirable, but
it is a hindrance when implementing parametric polymor-
phism. For instance, instantiations of a polymorphic class
at types int and float must have separate implementations
in the heterogenous translation, even though the word-level
operations are identical.

These modest costs could be avoided only by altering
the Java Virtual Machine (for instance, as suggested by
[BLM96]), or by compiling Pizza directly to some other
portable low-level code, such as Microsoft’s Omnicode or
Lucent’s Dis.

Visibility. Java provides four visibility levels: private,
visible only within the class; default, visible only within the
package containing the class; protected, visible only within
the package containing the class and within subclasses of
the class; public, visible everywhere. Classes can only have
default or public visibility; fields and methods of a class may
have any of the four levels.

A function abstraction in Pizza defines a new class in
Java (to represent the closure) and a new method in the
original class (to represent the abstraction body). The con-
structor for the closure class should be invoked only in the
original class, and the body method should be invoked only
within the closure class. Java provides no way to enforce
this style of visibility. Instead, the closure class and body
method must be visible at least to the entire package con-
taining the original class. One cannot guarantee appropriate
access to closures, unless one relies on dynamically allocated
keys and run-time checks.

For similar reasons, all fields of an algebraic type must
have default or public visibility, even when private or pro-
tected visibility may be desirable.

Dynamic loading. Java provides facilities for dynamic
code loading. In a native environment the user may specify
a class loader to locate code corresponding to a given class
name. The heterogenous translation can benefit by using a
class loader to generate on the fly the code for an instance
of a parameterised class.

Unfortunately, a fixed class loader must be used for Java
code executed by a web client. With a little work, it should
be possible to allow user-defined class loaders without com-
promising security.

Interfaces for built-in classes. In Section 2.1 we needed
to declare a new class OrdInt that implements the interface
Ord. We could not simply extend the Integer class, because
for efficiency reasons it is final, and can have no subclasses.
A similar problem arises for String. This is a problem for
Java proper, but it may be aggravated in Pizza, which en-
hances the significance of interfaces by their use for bounded
polymorphism.

Tail calls. We would like for Pizza to support tail calls
[SS76], but this is difficult without support in the Java Vir-

10

tual Machine. We hope for such support in future versions
of Java.

Arrays. As discussed previously, there is a rather poor fit
between polymorphic arrays in Pizza and their translation
into Java.

7 Conclusion

Pizza extends Java with parametric polymorphism, higher-
order functions, and algebraic data types; and is defined by
translation into Java. The lessons we learned include the
following:

e Qur requirement that Pizza translate into Java
strongly constrained the design space. Despite this, it
turns out that our new features integrate well: Pizza
fits smoothly to Java, with relatively few rough edges.

e It is useful to isolate two idioms for translating poly-
morphism, which we call heterogenous and homoge-
nous. Adding bounded polymorphism proved surpris-
ingly easy, while polymorphic arrays proved surpris-
ingly difficult. Ironically, the use of subtyping in Java
to mimic parametric polymorphism prohibits adopting
the best model of arrays in Pizza.

e Standard notions from type theory help us model much
of the behaviour of the Java and Pizza type systems.
We made use of F-bounded polymorphism and exis-
tential types. Subsumption was not so helpful, and we
introduced a notion of completion instead.

We are now adding Pizza features to our EspressoGrinder
compiler for Java, and look forward to feedback from expe-
rience with our design.

Acknowledgments

‘We’d like to thank the anonymous referees for their thorough
and helpful comments.

A Syntax extensions

Figure 1 sketches syntax extensions of Pizza with respect to
Java in EBNF format [Wir77].

B Pizza’s Type System

Since full Pizza is an extension of Java, and Java is too
complex for a concise formal definition, we concentrate here
on a subset of Pizza that reflects essential aspects of our
extensions. The abstract syntax of Mini-Pizza programs is
given in Figure 2. N

Preliminaries: We use vector notation A to indicate a se-
quence Ay, ..., Ap. A=Ay, ..., Apand B=By, ..., B,
and @ is a binary operator then A @ B stands for A; @
Bi, ..., An ® By. If A and B have different lengths then
A @ B is not defined. Each predicate p is promoted to
a predicate over vectors: p(Ai, ..., A,) is interpreted as
p(A1) A ... Ap(Arn). We use ‘<’ to express class extension,
rather than the ‘extends’ keyword that Java and Pizza source
programs use.

Overview of Mini Pizza: A program consists of a se-
quence of class declarations K; we do not consider packages.

exrpression = ...
| fun type ([params]) [throws types| block
type = ...
| ([types]) [throws types] — type
| qualident [< types >]
typevardel = ident
| ident implements type
| ident extends type
typeformals = < typevardcl {, typevardel} >
classdef = class ident [typeformals] [extends type]
[implements types| classBlock
interfacedef = interface ident [typeformals]
[extends types| interfaceBlock
methoddef = modifiers [typeformals| ident ([params])
{[1} [throws types| (block | ;)
classBlock = ...
| casedef
casedef = modifiers [typeformals] case ident
[([params])] ;
case = case [typeformals] pattern : statements
| default : statements
pattern eTPTession

| type ident
| qualident apat {, apat})

Figure 1: Pizza’s syntax extensions.

Each class definition contains the name of the defined class,
¢, the class parameters @ with their bounds, the type that
¢ extends, and a sequence of member declarations. We re-
quire that every class extends another class, except for class
Object, which extends itself. For space reason we omit inter-
faces in this summary, but adding them would be straight-
forward.

Definitions in a class body define either variables or func-
tions. Variables are always object fields and functions are
always object methods. We do not consider static variables
or functions, and also do not deal with access specifiers in
declarations. To keep the presentation manageable, we do
not consider overloading and assume that every identifier is
used only once in a class, and that identifiers in different
classes with the same name correspond to methods that are
in an “override” relationship.

As Pizza statements we have expression statements E;,
function returns return E; , statement composition Si Sa,
and conditionals if (E) S; else S>. As Pizza expressions we
have identifiers z, selection E.z, (higher-order) function ap-
plication E(E4, ..., E,), assignment E; = FEs, object cre-
ation new ¢() and type casts (c)E.

Types_are either type variables o, or parameterized
classes c<A>, or function types (A4) — B. For simplicity we
leave out Java’s primitive types such as int or float. Func-

11

Variables T,y
Classids c,d
Typevars a, B
Program P =K
Classdcl K = class c<a < B> extends C {M}
Memberdel M = Ax=E;
| <aAz(By) {S}
Statement S = E; |return E; | 51 52 |
if (E) S else S
Expression E = z|E.x|E(E)]|newc()]|
El = E2 | (C)E
Classtype C = <A
Type AB=C|(A) —B|a
Typescheme U = A|Va<B.U |var A
Typesum X = A|JFa<BX
Typebound B =C
Constraint X =a<B
Typothesis T =z:U
Classdcl D = c:class(@< B,T,A)
Classenv A =D

Figure 2: Abstract Syntax of Mini Pizza.

tions may have F-bounded polymorphic type Va < B.A and
the type of a mutable variable is always of the form var A.
These two forms are not proper types but belong to the
syntactic category of typeschemes U.

In some statement and expression contexts we also admit
existential types Ja < B.A. Like typeschemes, these type-
sums have no written representation in Pizza programs; they
are used only internally for assigning types to intermediate
expressions. Quantifiers V and 3 bind lists @ of type vari-
ables; hence mutual recursion between type variable bounds
is possible, as in the following example:

Ja < <6>,6 < d<a>. A .

Type judgements contain both a subtype constraint ¥ and a
typothesis I'. For both environments we denote environment
extension by new variables with an infix dot, i.e. X.a0 < B,
T'.z : U. Since subtyping in Java and Pizza is by declaration,
subtyping rules depend on a class environment A, which is
generated by the program’s class declarations.

Well-formedness of Programs: Type checking a pizza
program proceeds in three phases.

1. Generate a class environment A,
2. check that A is well-formed, and
3. check that every class is well-formed under A.

Phase 1:
class definition

Generating A is straightforward. For each

class c<a < B> extends A {D}

we make a binding that associates the class name ¢ with an
entry class(a < B,T',A). The entry consists of the class
parameters with their bounds, a local environment I'" that

(Top) X < Object
(Refl) T F X<X
TFXi1<X: Dk X<X3
Ty < <
(Lrans) S F X:<Xs
a<B €eXx A€EB
<
(@ <) YFa<A
c:class(@< B,T,C) € A
(c<) Y+ AL Bla:= 4]
Y F c<A> < Cla = A
3 Ya<BF X<X a ¢ tu(X')
= Yk (F@a<BX)<X'
<3) LTk X<X[a:=4 T F A<Bla:=4
= Y F X< (Fa<BX)

Figure 3: The subtype relation ¥ F X < X'.

records the declared types of all class members, and the
supertype of the class.
A class environment generates a subtype logic

Y+ A<B

between types and typesums, which is defined in Figure 3.
Following Java, we take function types to be non-variant in
their argument and result types.

In the following, we want to restrict our attention to well-
formed types, that satisfy each of the following conditions:

e Every free type variable is bound in ¥
e Every class name is bound in A.

e If a class has parameters, then the actual parameters
are subtypes of the typebounds of the formal parame-
ters.

It is straightforward to formalize these requirements in a wf
predicate for types and typeschemes. For space reasons such
a formalization is omitted here.

Phase 2: A class environment A is well-formed, if it
satisfies the following conditions:

1. <is a partial order on ground types with a top element
(i.e. Object).

2. For all ground types A, B, if A is well-formed and
F A < B then B is well-formed.

3. Field or method declarations in different classes with
the same name have the same type.

If the class environment is well-formed, the subtype relation
over typesums is a complete upper semilattice:

Proposition 1 Let ¥ be a subtype environment, and let X
be a set of typesums. Then there is a least typesum UX such
that

TR X <ux forall X' €eXx .

12

z:U €T
T
(Taut) 5T F z:cpl(U)
Y,;I' H E:var A
Eli ’
(var Elim) == E : cpl(A)
T F E:Va<BU
(VElim) X, + A<B[a:=A4]
3T F E:Ula = 4]
) S I'+ E:3a<BX
GEim) BT+ B X
where
cpl(a) = «
cpl(C) = C

cpl((@, C, A) — B) VB < C.cpl((@, 8, 4) — B)

where 3 fresh

cpl((@) - A) = VZ.(a)— B
where VE.B = cpl(A)
cpl(VE.U) = VX.epl(U)
Figure 4: Second order rules.

Proof idea: Every typesum X has only finitely many super-
types A. Let super(X) be the set of supertypes of X and
take UX = o < ([p super(X)). a.

The type checking problem for Pizza expressions can be
reduced to the problem of finding a most general substitu-
tion that solves a set of subtype constraints. Let 61 and 6>
be substitutions on a given set of type variables, V. We say
01 is more general than 6 if there is a substitution 63 such
that ab1 < ab20s, for all a € V.

Proposition 2 Let ¥ be a subtype environment, let C be a
system of subtype constraints (X; < X{)i=1,...,n, and let V
be a set of type variables. Then either

o there is no substitution 6 such that dom(d) C V and
Y F C, or

e there is a most general substitution 6 such that
dom(9) CV and X + (6.

Phase 3:1In the following, we always assume that we have
a well-formed class environment A. We start with the rule
for typing variables, followed by rules for eliminating type-
schemes and type sums in typing judgements. We then give
typing rules rules for all remaining Mini-Pizza constructs:
expressions, statements, member- and class-declarations.

Figure 4 presents typing rules for variables and elimina-
tion rules for quantified types. The type of a variable z is
the completion of the declared type of x, which is recorded
in the typothesis. Completion extends the range of an ar-
gument type C to all subtypes of C. Rule (var Elim) im-
plements Java’s implicit dereferencing of mutable variables.
Rule (V Elim) is the standard quantifer elimination rule of
F-bounded polymorphism. Finally, rule (3 Elim) eliminates
existential quantifiers by skolemisation.

LT HE:A T F A<c
(Select) c¢:class(@< B,T.,C) € A a<BT.Fa:U
T + Ex:Ula:= B
LT+ E:(A) —>B ST+-E:A
Appl —
(Apply) ST F EE):B
(New) %,T F newc():c<A>
>,T' - E;:var A
(Assign) X,T' F E: X YFX<A
ST HE =E:A
5T+ E:A L F AL «
-d) i
(Widen) S.T F (0)E : c
STHE:A
(Narrow) T F (o)E:U{X | X =3% .c<A>,
TFX<A}
Figure 5: Typing rules for expressions.
Figure 5 presents typing rules for expressions. Most

of these rules are straightforward; note in particular that
the function application rule (Apply) is the standard Hind-
ley/Milner rule without any widening of argument types.
The two rules for typecasts are more subtle. When an ex-
pression E with static type A is cast to a class ¢ then one of
two situations must apply. Either ¢ is the name of a super-
class of A. In that case A is widened to a class ¢, possibly
completed with parameters such that the resulting type is
a supertype of A. Otherwise, ¢ must be the name of a sub-
class of A. In that case, we narrow A to the largest (wrt
<) typesum X < A generated from class ¢. The typesum X
might contain existential quantifiers.

Figure 6 presents typing rules for statements. The type
of a statement is the least upper bound of the types of all
expressions returned from that statement. By Proposition 1
the least upper bound always exists. If no expression is
returned, then the type of the statement is arbitrary (that
is, we assume that checking that every non-void procedure
has a return statement is done elsewhere).

Figure 7 presents rules that determine whether a class-
or member-declaration is well-formed. Obviously, all types
written in a declaration must be well-formed. For variable
declarations we require that the initializing expression must
be a subtype of the variable’s declared type. Analogously,
for function declarations we require that the return type of a
function body must be a subtype of the function’s declared
return type.

Finally, a class declaration K is well-formed if all of its
member declarations are well-formed in a context consisting
of K’s formal type parameters and K’s class typothesis, plus
appropriate bindings for the two standard identifiers this and
super.

13

> T'FE:A

E P
(Expr) S 5 B
(Se) E,FI—51:X1 E,F'_S2:X2

1 3, F S1 S XqiUXs

5THE:A
(Return) Y, - return FE; : A
¥, I' + Ep:boolean

(Cond) E,F = Slin E,F = SQZXQ

E,P l- if (E()) E1 else E2 : X1 [N X2

Figure 6: Typing rules for statements.

Y F Awf
(Vardel) 2TFHE:X X F X<A
5T+ Az =FE; wf
L+ Awf X F Bwf
(Fundel) T F X<B XX T5:AF S:X

T F <> Ba(Ay): {S} wf

c:class(@< B,I,C) € A
(Classdcl) @ < B,T.this: c<a>.super : C - M wf
F class c<a < B> extends C {M} wf

Figure 7: Typing rules for declarations.

References
[AW93] Alexander Aiken and Edward L. Wimmers. Type
inclusion constraints and type inference. In
Proc. Functional Programming Languages and
Computer Architecture, pages 31-41. ACM, June
1993.

[AGY6] Ken Arnold and James Gosling. The Java Pro-
gramming Language. Java Series, Sun Microsys-

tems, 1996. ISBN 0-201-63455-4.

[BTCGS91] Val Breazu-Tannen, Thierry Coquand, Carl A.
Gunther, and Andre Scedrov. Inheritance as im-
plicit coercion. Information and Computation,
93:172-221, 1991.

[BCC*96] Kim Bruce, Luca Cardelli, Guiseppe Castagna,
The Hopkins Objects Group, Gary T.Leavens,
and Benjamin Pierce. On binary methods. The-
ory and Practice of Object Systems, 1(3), 1996.

[BLM96] J. A. Bank, B. Liskov, and A. C. Myers. Pa-

rameterised types and Java. Technical Report
MIT LCS TM-553, Laboratory for Computer
Science, Massachusetts Institute of Technology,
May 1996.

[Bru97]

[BWSS]

[CCH*89]

[CW85]

[DM82]

[ESTZ95]

[GIS96]

[Jon93]

[Lu95]

[LO94]

[LM91]

[MP8S]

[Oho92]

[OP95]

Kim Bruce. Typing in object-oriented languages:
Achieving expressibility and safety. Computing
Surveys, to appear.

Richard S. Bird and Philip Wadler. Introduction
to Functional Programming. Prentice-Hall, 1988.

Peter Canning, William Cook, Walter Hill, Wal-
ter Olthoff, and John C. Mitchell. F-bounded
polymorphism for object-oriented programming.
In Proc. Functional Programming Languages and
Computer Architecture, pages 273-280, Septem-
ber 1989.

Luca Cardelli and Peter Wegner. On under-
standing types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471-522, De-
cember 1985.

Luis Damas and Robin Milner. Principal type
schemes for functional programs. In Proc. 9th
ACM Symposium on Principles of Programming
Languages, January 1982.

Jonathan Eifrig, Scott Smith, Valery Trifonov,
Amy Zwarico. An interpretation of typed OOP
in a language with state. Lisp and Symbolic
Computation 8(4):357-397, December 1995.

James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Java Series, Sun
Microsystems, 1996. ISBN 0-201-63451-1.

M. P. Jones. A system of constructor classes:
overloading and implicit higher-order polymor-
phism. In Proc. Functional Programming Lan-
guages and Computer Architecture, pages 52—61.
ACM, June 1993.

K. Laufer. A framework for higher-order func-
tions in C++. In Proc. Conf. Object-Oriented
Technologies (COOTS), Monterey, CA, June
1995. USENIX.

Konstantin Laiufer and Martin Odersky. Poly-
morphic type inference and abstract data types.
ACM Trans. on Programming Languages and
Systems, 16(5): 1411-1430, 1994.

Xavier Leroy and Michel Mauny. Dynamics
in ML. Proc. Functional Programming Lan-
guages and Computer Architecture, pages 406—
426. Springer-Verlag, August 1991. Lecture
Notes in Computer Science 523.

J. Mitchell and G. Plotkin. Abstract types have
existential types. ACM Trans. on Programming
Languages and Systems, 10(3):470-502, 1988.

Atsushi Ohori. A compilation method for ML-
style polymorphic record calculi. In Proc. 19th
ACM Symposium on Principles of Programming
Languages, pages 154-165, January 1992.

Martin Odersky and Michael Philippsen. Espres-
soGrinder distribution.
http://wwwipd.ira.uka.de/~espresso.

14

[Pau9l]

[SS76]

[Stro1]

[Sun96a)

[Sun96b]

[WBS9]

[Wir77]

L. C. Paulson. ML for the Working Programmer.
Cambridge University Press, 1991. ISBN 0-521-
39022-2.

Guy Steele and Gerald Jay Sussman. Lambda:
The ultimate imperative. Al Memo 353, MIT AI
Lab, March 1976.

Bjarne Stroustrup. The C++ Programming Lan-
guage, Second Edition. Addison-Wesley, 1991.

Sun Microsystems. Inner classes in Java.
http://java.sun.com/products/JDK/1.1/
designspecs/innerclasses.

Sun Microsystems. Java core reflection.
http://java.sun.com/products/JDK/1.1/
designspecs/reflection.

Philip Wadler and Stephen Blott. How to make
ad-hoc polymorphism less ad-hoc. In Proc. 16th
ACM Symposium on Principles of Programming
Languages, pages 60-76, January 1989.

Niklaus Wirth. What can we do about the un-
nessesary diversity of notation for syntactic def-
initions? Comm. ACM, 20, pages 822-823,
November 1977.

