Frameworks: an OO library approach

Key idea: library includes a set of classes (often abstract)
from which users make subclasses, not just instances

Morphic is a good example

* Morph abstract class defines many methods, which call
each other via sends to self

¢ subclasses of Morph provide a small amount of specific
behavior (e.g. the shape, or the interaction)

Users of Morphic proceed by defining subclasses of Morph (or
of one of its more specialized subclasses)

« override a few methods (e.g. initialize , step ,
mouseDown:) to do their client-specific work

Craig Chambers 136 CSE 341

First-class classes

In Smalltalk, classes are themselves objects
+ uniformity of language design
+ can pass around classes just like any other object
+ can send messages to classes just like any object
¢« eg.newetal, G

But
if every object has a class,
and every class is an object,
then what is the class of a class?

« the class of the class holds the methods for the class

The class of a class is called a metaclass

Craig Chambers 137 CSE 341

Metaclass designs

In Smalltalk-76:

« all classes were instances of the single class Metaclass
which was an instance of itself

+ “simple”

- every class had to have the same operations
O couldn’t have class-specific initialization methods

In Smalltalk-80 & Squeak:
« each class was an instance of its own unique metaclass
(e.g. the class Point had a unique class Point class)
each metaclass was an instance of the class Metaclass ,

which was an instance of Metaclass class , which was
an instance of Metaclass

browser hides metaclasses from user
allows each class to have its own class methods
massively complicated

+

Craig Chambers 138 CSE 341

An alternative: drop classes

Prototype-based, or classless languages (e.g. Self, Cecil, ...)

Idea:

* let objects store their own methods directly,
without recourse to a class

let objects inherit directly from other objects

new objects created by copying existing ones, or by making
fresh objects that inherit from existing ones

can build separate factory objects to hold things that used
to be in a class

browser and inspector are merged

+ no metaclasses

+

simpler language
- less structure

Craig Chambers 139 CSE 341

Other alternatives

Make classes second-class (C++)
« classes aren't real objects

« can't send them messages
O don’t have to worry about what their class is

« special second-class constructor “methods”
» no dispatching or inheritance for second-class “methods”

Treat class “methods” in a second-class way (Java)

« classes are objects, but have a common set of methods
(as in Smalltalk-76)

« introduce second-class static methods, static fields, and
constructors to do some of what Smalltalk-80 classes can
do

Craig Chambers 140 CSE 341

