
Craig Chambers 136 CSE 341

Frameworks: an OO library approach

Key idea: library includes a set of classes (often abstract)
from which users make subclasses, not just instances

Morphic is a good example

• Morph abstract class defines many methods, which call
each other via sends to self

• subclasses of Morph provide a small amount of specific
behavior (e.g. the shape, or the interaction)

Users of Morphic proceed by defining subclasses of Morph (or
of one of its more specialized subclasses)

• override a few methods (e.g. initialize , step ,
mouseDown:) to do their client-specific work

Craig Chambers 137 CSE 341

First-class classes

In Smalltalk, classes are themselves objects

+ uniformity of language design

+ can pass around classes just like any other object

+ can send messages to classes just like any object

• e.g. new et al., G

But
if every object has a class,
and every class is an object,
then what is the class of a class?

• the class of the class holds the methods for the class

The class of a class is called a metaclass

Craig Chambers 138 CSE 341

Metaclass designs

In Smalltalk-76:

• all classes were instances of the single class Metaclass ,
which was an instance of itself

+ “simple”

− every class had to have the same operations
⇒ couldn’t have class-specific initialization methods

In Smalltalk-80 & Squeak:

• each class was an instance of its own unique metaclass
(e.g. the class Point had a unique class Point class)

• each metaclass was an instance of the class Metaclass ,
which was an instance of Metaclass class , which was
an instance of Metaclass

• browser hides metaclasses from user

+ allows each class to have its own class methods

− massively complicated

Craig Chambers 139 CSE 341

An alternative: drop classes

Prototype-based, or classless languages (e.g. Self, Cecil, ...)

Idea:

• let objects store their own methods directly,
without recourse to a class

• let objects inherit directly from other objects

• new objects created by copying existing ones, or by making
fresh objects that inherit from existing ones

• can build separate factory objects to hold things that used
to be in a class

• browser and inspector are merged

+ no metaclasses

+ simpler language

− less structure

Craig Chambers 140 CSE 341

Other alternatives

Make classes second-class (C++)

• classes aren’t real objects

• can’t send them messages
⇒ don’t have to worry about what their class is

• special second-class constructor “methods”

• no dispatching or inheritance for second-class “methods”

Treat class “methods” in a second-class way (Java)

• classes are objects, but have a common set of methods
(as in Smalltalk-76)

• introduce second-class static methods, static fields, and
constructors to do some of what Smalltalk-80 classes can
do

