
Craig Chambers 73 CSE 341

A common pattern: map

Pattern: take a list and produce a new list,
where each element of the output is calculated from the
corresponding element of the input

map captures this pattern

map: ('a -> 'b) * 'a list -> 'b list

Example:

• have a list of fahrenheit temperatures for Seattle days

• want to give a list of temps to friend in England

• specification: convert each temp (F) to temp (C)

- fun f2c(f_temp) = (f_temp - 32.0) * 5.0/9.0;

val f2c = fn : real -> real

- val f_temps = [56.4, 72.2, 68.4, 78.4, 45.0];

val f_temps = [56.4,72.2,68.4,78.4,45.0]
: real list

- val c_temps = map(f2c, f_temps);

val c_temps = [13.5555555556,
22.3333333333,
20.2222222222,
25.7777777778,
7.22222222222] : real list

Craig Chambers 74 CSE 341

Another common pattern: filter

Pattern: take a list and produce a new list
of all the elements of the first list that pass some test
(a predicate)

filter captures this pattern

filter: ('a -> bool) * 'a list -> 'a list

Example:

• have a list of day * temp

• want a list of nice days

- fun nice_day(temp) = temp >= 70.0;

val nice_day = fn : real -> bool

- val nice_days = filter(nice_day, f_temps);

val nice_days = [72.2,78.4] : real list

Craig Chambers 75 CSE 341

Another common pattern: find

Pattern:
take a list and return the first element that passes some test,
raising NotFound if no element passes the test

find captures this pattern

find: ('a -> bool) * 'a list -> 'a

exception NotFound

Example: find first nice day

- val a_nice_day = find(nice_day, f_temps);

a_nice_day = 72.2 : real

Craig Chambers 76 CSE 341

Anonymous functions

Map functions and predicate functions often pretty simple,
only used as argument to map, etc.,
don’t merit their own name

Can directly write anonymous function expressions :
fn pattern formal => expr body

- fn (x)=> x + 1;

val it = fn : int -> int

- (fn (x)=> x + 1)(8);

9 : int

- map(fn (f)=> (f - 32.0) * 5.0/9.0, f_temps);

val it = [13.5555555556,...] : real list

- filter(fn (t)=> t < 60.0, f_temps);

val it = [56.4,45.0] : real list

Craig Chambers 77 CSE 341

Fun vs. fn

fn expressions are a primitive notion

val declarations are a primitive notion

fun declarations are just a convenient syntax for val + fn

fun f(args) = expr

is sugar for

val f = (fn (args)=> expr)

fun succ(x) = x + 1

is sugar for

val succ = (fn (x) => x + 1)

Explains why the type of a fun declaration
prints like a val declaration with a fn value

val succ = fn : int -> int

Symptoms of good design

• orthogonality of primitives

• syntactic sugar for common combinations

Craig Chambers 78 CSE 341

Nested functions

An example

- fun good_days(good_temp:real,

= temps:real list):real list =

= filter(fn (temp)=> (temp >= good_temp),

= temps);

val good_days = fn : real*real list -> real list

(* good days in Seattle: *)

- good_days(70.0, f_temps)

val it = [72.2,78.4] : real list

(* good days in Fairbanks: *)

- good_days(32.0, f_temps)

val it = [56.4,72.2,68.4,78.4,45.0] : real list

What’s interesting about the anonymous function expression
fn (temp)=> (temp >= good_temp) ?

Craig Chambers 79 CSE 341

Nested functions and scoping

If functions can be written nested within other functions
(whether named in a let expression, or anonymous)
then can reference local variables in enclosing function
scope

Makes nested functions a lot more useful in practice

Beyond what can be done with function pointers in C/C++

Craig Chambers 80 CSE 341

A general pattern: reduce

The most general pattern over lists simply abstracts the
standard pattern of recursion

Recursion pattern:

fun f (..., nil, ...) = ... (* base case *)
| f (..., x::xs, ...) =

(* inductive case *)
... x ... f (..., xs, ...) ...

Parameters of this pattern, for a list argument of type 'a list :

• what to return as the base case result ('b)

• how to compute the inductive result
from the head and the recursive call ('a * 'b -> 'b)

reduce captures this pattern

reduce: ('a*'b -> 'b) * 'b * 'a list -> 'b

ML’s form of a loop over a list

Craig Chambers 81 CSE 341

Examples using reduce

reduce: ('a*'b -> 'b) * 'b * 'a list -> 'b

Summing all the elements of a list

- val rainfall = [0.0, 1.2, 0.0, 0.4, 1.3, 1.1];

val rainfall = [0.0,1.2,0.0,0.4,1.3,1.1]
: real list

- val total_rainfall =

= reduce(fn (rain,subtotal)=>rain+subtotal,

= 0.0, rainfall);

val total_rainfall = 4.0 : real

Craig Chambers 82 CSE 341

Modules for name-space management

A file full of types and functions can be cumbersome to manage

Would like some hierarchical organization to names

Modules allow grouping declarations to achieve
a hierarchical name-space

structure declarations in ML create modules

- structure Assoc_List = struct

= type (''k,'v) assoc_list = (''k*'v) list

= val empty = nil

= fun store(alist, key, value) = ...

= fun fetch(alist, key) = ...

= end ;

structure Assoc_List : sig
type ('a,'b) assoc_list = ('a*'b) list
val empty : 'a list
val store : ('’a*'b) list * ''a * 'b ->

('’a*'b) list
val fetch : ('’a*'b) list * ''a -> 'b

end

Craig Chambers 83 CSE 341

Using structures

To access declarations in a structure, use dot notation

- val league = Assoc_List.empty;

val l = [] : 'a list

- val league =

= Assoc_List.store(league, "Mariners", {..});

val league = [("Mariners", {..})]
: (string*{..}) list

- ...

- Assoc_List.fetch("Mariners");

val it = {wins=78,losses=4} : {..}

Other definitions of empty , store , fetch , etc. don’t clash

Common names can be reused by different structures

Craig Chambers 84 CSE 341

The open declaration

To avoid typing a lot of structure names, can use the
open struct_name declaration to introduce local
synonyms for all the declarations in a structure
(usually in a let or within some other struct)

fun create_league(names) =
let

open Assoc_List
val init = {wins=0,losses=0}

in
reduce(fn (name,league)=>

store(league,name,init),
empty, names)

end

Craig Chambers 85 CSE 341

Modules for encapsulation

Want to hide details of data structure implementations
from clients, i.e., data abstraction

• simplify interface to clients

• allow implementation to change without affecting clients

In C++ and Java, use public /private annotations

In ML:

• define a signature that specifies the desired interface

• specify the signature with the structure declaration

E.g. a signature that hides the implementation of assoc_list :

- signature ASSOC_LIST = sig

= type (''a,'b) T

= val empty : (''a,'b) T

= val store : (''a,'b) T * ''a * 'b ->

= (''a,'b) T

= val fetch : (''a,'b) T * ''a -> 'b

= end ;

signature ASSOC_LIST = sig ... end

Craig Chambers 86 CSE 341

Specifying the signatures of structures

Specify desired signature of structure when declaring it:

- structure Assoc_List :> ASSOC_LIST = struct

= type (''k,'v) T = (''k*'v) list

= val empty = nil

= fun store(alist, key, value) = ...

= fun fetch(alist, key) = ...

= fun helper(...) = ...

= end ;

structure Assoc_List : ASSOC_LIST

The structure’s interface is the given one,
not the default interface that exposes everything

Craig Chambers 87 CSE 341

Hidden implementation

Now clients can’t see implementation, nor guess it

- val teams = Assoc_List.empty;

val teams = - : (''a,'b) Assoc_List.T

- val teams’ = "Mariners"::"Yankees"::teams;

Error: operator and operand don't agree
operator: string * string list
operand: string * (''Z,'Y) Assoc_List.T

- Assoc_List.helper(...);

Error: unbound variable helper in path
Assoc_List.helper

- type Records = (string,...) Assoc_List.T;

type Records = (string,...) Assoc_List.T

- fun sortStandings(nil:Records):Records = nil

= | sortStandings(pivot::rest) = ...;

Error: pattern and constraint don't agree
pattern: 'Z list
constraint: Records

in pattern: nil : Records

How to write sortStandings , if implementation is hidden?

Craig Chambers 88 CSE 341

Including reduce etc. in external interfaces

To provide a complete interface if representation is hidden,
often need to include ways of traversing the data structure

Reduce or its equivalent is often needed,
as the most general pattern of iteration or recursion

E.g.:

- signature ASSOC_LIST = sig

= ...

= val reduce: ((''a * 'b) * 'c) * 'c *

= (''a,'b) T -> 'c

= end

= structure Assoc_List :> ASSOC_LIST = struct

= ...

= fun reduce(f, base, alist) = ...

= end ;

...

- fun sortStandings(records) =

= ... Assoc_List.reduce(..., records) ...

...

Craig Chambers 89 CSE 341

Modules vs. classes

Classes (abstract data types) implicitly define a single type,
with associated constructors, observers, and mutators

Modules can define 0, 1, or many types in same module,
with associated operations over several types

• no new types if adding operations to existing type(s)

• hard to do in C++

• multiple types can share private data & operations

• requires friend declarations in C++

• one new type requires a name for the type (e.g. T)

• class name is also type name in C++, conveniently

C++’s public/private is simpler than ML’s separate signatures,
but C++ doesn’t have a simple way of describing just an
interface

