Type inference for functions

Type declaration of function result can be omitted

- infer function result type from body expression result type
- fun max(x:int, y:int) =
$=\quad$ if x >= y then x else $y ;$
val max $=$ fn : int * int -> int

Can even omit type declarations on arguments to functions

- infer all types based on how arguments are used in body
- fancy, constraint-based algorithm to do type inference
- fun max $(x, y)=$
$=\quad$ if $x>=y$ then x else $y ;$ val max $=$ fn : int * int -> int

Type Inference: A Big Idea

Polymorphic types

A polymorphic type contains one or more type variables

- an identifier starting with a quote
E.g.
'a list
'a * 'b * 'a * 'c
\{x:'a, y:'b\} list * 'a -> 'b

A polymorphic type describes a set of possible (regular) types, where each type variable is replaced with some type

- each occurrence of a type variable must be replaced with the same type

Polymorphic Types: A Huge Idea

Functions with many possible types

Some functions could be used on arguments of different types

Some examples:
null: can test an int list, or a string list, or

- in general, work on a list of any type τ :

```
null: T list -> bool
```

hd: similarly works on a list of any type T, and returns an element of that type:

```
hd: T list -> T
```

swap: takes a pair of an A and a B, returns a pair of a B and an A : swap: A * $B \rightarrow B$ * A

How to define such functions in a statically-typed language?

- in C: can't (or have to use casts)
- in C++: can use templates
- in ML: allow functions to have polymorphic types

Polymorphic functions

Functions can have polymorphic types:

$$
\begin{array}{ll}
\text { null } & : \text { 'a list -> bool } \\
\text { hd } & : \text { 'a list -> 'a } \\
\text { tl } & : \text { 'a list -> 'a list } \\
\text { (op : :) : 'a * 'a list -> 'a list } \\
\text { swap } & : \text { 'a * 'b -> 'b * 'a }
\end{array}
$$

When calling a polymorphic function, need to find the instantiation of the polymorphic type into a regular type

- caller knows types of arguments
- can compute how to replace type variables so that the replaced function type matches the argument types
- derive type of result of call
E.g.
hd ([3, 4, 5])
- actual argument type: int list
- polymorphic type of hd: 'a list -> 'a
- replace 'a with int to make a match
- instantiated type of hd for this call: int list -> int
- type of result of call: int

Polymorphic values

Regular values can polymorphic, too
nil: 'a list

Each reference to nil finds the right instantiation for that use, separately from other references
E.g.
(3 :: 4 :: nil) :: (5 :: nil) :: nil

Recursive types

Lists are a recursively defined data type:
"A list is either
nil, or
a pair of a head value and a tail list'

This definition has
a base case (which is not recursively defined) and an inductive case (which is recursively defined)

All well-founded recursive definitions have
at least one base case (to be able to stop the recursion) and at least one inductive case (so there's some recursion), where the inductive cases refer to a smaller subcases

A value of a recursive type is made up of
one of the base cases
possibly extended with one or more recursive cases
"The list [1,2] is the pair of 1 and (the pair of 2 and (nil))"

Recursive Types: A Big Idea

Polymorphic type inference

ML infers types of expressions automatically, as follows:

- assign each declared variable a fresh type variable
- result of function is implicit variable
- each reference to a polymorphic function or value gets fresh type variables to describe that instantiation
- each subexpression in construct places constraints on types of its operands
- solve constraints

Overconstrained (unsatisfiable constraints) \Rightarrow type error
Underconstrained (still some type variables) \Rightarrow a polymorphic result

Some details:

- resolving overloaded operators like,$+<$
- resolving the special =, <> operators ("equality types")
- some restrictions on use of polymorphic results at top-level
("type vars not generalized because of value restriction")

Polymorphic Type Inference: A Big Idea

33
CSE 341

Recursive functions

Recursive types are naturally manipulated with recursive functions

- operations on lists
- operations on trees
- some operations on numbers
- ...

Pattern:

- check if have base case \#1
if so, then compute appropriate result
- repeat for other base cases, if any
- then check for inductive case \#1
if so, then
- compute results for subproblems
- combine into result for overall problem
- repeat for other inductive cases, if any

Recursive functions apply "divide and conquer"

- divide big problem into some smaller subproblems
- solve them separately
- solve big problem using the subproblem solutions

Recursive functions on lists

Given pattern of list data type:
"A list is either
nil, or
a pair of a head value and a tail list'

Have a standard pattern of recursive function over list data type:

```
fun f(..., lst, ...) =
    if null(lst) then
            (* base case *)
        else
        (* inductive case *)
        ... hd(lst) ... f(..., tl(lst), ...) ...
```

 Craig Chambers
 36

Recursion vs. iteration

Recursion more general than iteration

- anything a loop can do, a recursive function can do
- some recursive functions require a loop + a stack

Recursion often considered less efficient (both time and space) than iteration

- procedure calls and stack allocation/deallocation on each "iteration"
- some "natural" inductive definitions less efficient than iterative definitions

Recursive functions on integers

Given pattern of "natural number" data type:
"A natural number is either
0 , or
1 + a natural number"

Have a standard pattern of recursive function over natural nums:

```
fun \(f(. . ., n, \ldots)=\)
    if \(n=0\) then
            (* base case *)
            .
    else
        (* inductive case *)
        ... \(n\)... \(f(\ldots, n-1, \ldots)\)...
```

(Could have several base cases)

Tail recursion

Tail recursion: recursive call is last operation before returning

- can be implemented just as efficiently as iteration, in both time and space, since tail-caller isn't needed after callee returns

Some tail-recursive functions:

```
fun last(lst) =
    let val tail = tl(lst) in
            if null(tail) then
                hd(lst)
            else
                last(tail)
    end
fun includes(lst, x) =
    if null(lst) then
        false
    else if hd(lst) = x then
        true
    else
        includes(tl(lst), x)
```

Some non-tail-recursive functions
length, square_all, append, fact, fib, ..

Converting to tail-recursive form

Can often rewrite a recursive function into a tail-recursive one

- introduce a helper function
- the helper function has an extra accumulator argument
- the accumulator holds the partial result computed so far
- accumulator returned as full result when base case reached

This isn't tail-recursive:
fun fact (n) =
if $n<=1$ then
1
else
n * fact $(n-1)$

This is:

```
fun fact_helper(n,res) =
    if n <= 1 then
        res
    else
        fact_helper(n-1, res*n)
    fun fact(n) =
        fact_helper(n, 1)
```

