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Functions

Some function definitions:

- fun  square(x:int):int = x * x;

val square = fn : int -> int

- fun swap(a:int, b:string):string*int = (b,a);

val swap = fn : int * string -> string * int

Some function types:

int -> int

int*string -> string*int

• in general: Targ(s)  -> Tresult(s)

• *  binds tighter than ->

Some function calls:

- square(3);

val it = 9 : int

- swap(3 * 4, "billy" ^ "bob");

val it = ("billybob",12) : string * int
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Expression-orientation

Function body is a single expression

fun  square(x:int):int = x * x

• not a statement list

• no return  keyword needed

Like equality in math

• a call to a function is equivalent to its body,
after substituting its formals for the actuals in the call

square(3) ⇔ (x*x )[x→3] ⇔ 3*3

There are no statements in ML, only expressions

• simplicity, regularity, and orthogonality in action

What would be statements in other languages
are recast as expressions in ML

Expression Orientation: A Big Idea
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If expression

General form:

if test then e1 else e2

• return value of either e1  or e2 ,
based on whether test  is true  or false

• cannot omit else  part

- fun max(x:int, y:int):int =

= if x >= y then x else y;

val max = fn : int * int -> int

Like ?:  operator in C

• don’t need the separate if  statement
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Static typechecking of if expression

What are the rules for typechecking an if  expression?

What’s the type of the result of if ?

Some basic principles of typechecking:

• values are members of types

• the type of an expression must include all the values that
might possibly result from evaluating that expression at
run-time

Requirements on each if  expression:

• the type of the test  expression must be bool

• the type of the result of the if must include whatever values
might be returned from the if

• the if  might return the result of either e1  or e2

A solution: e1  and e2  must have the same type,
and that type is the type of the result of the if  expression
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Let expression

An expression that introduces a new nested scope
with local variable declarations

• unlike { ... } statements in C, which don’t compute results

General form:

let val id 1: type 1 = e1
...
val id n: type n = en

in
ebody

end

• type i  are optional; they’ll be inferred

Evaluates each ei  and binds it to id i , in turn

• each ei  can refer to the previous id 1..id i-1  bindings

Evaluates ebody  and returns it as the result of the let

expression

• can refer to all the id 1..id n bindings

The id i  bindings disappear after ebody  is evaluated

• they’re in a nested, local scope
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Example scopes

- val  x = 3;

val x = 3 : int

- fun  f(y:int):int =

= let

= val  z = x + y

= val  x = 4

= in

= ( let

= val  y = z + x

= in

= x + y + z

= end )

= + x + y + z

= end ;

val f = fn : int -> int

- val  x = 5;

val x = 5 : int

- f(x);

???


