
Craig Chambers 22 CSE 341

Functions

Some function definitions:

- fun square(x:int):int = x * x;

val square = fn : int -> int

- fun swap(a:int, b:string):string*int = (b,a);

val swap = fn : int * string -> string * int

Some function types:

int -> int

int*string -> string*int

• in general: Targ(s) -> Tresult(s)

• * binds tighter than ->

Some function calls:

- square(3);

val it = 9 : int

- swap(3 * 4, "billy" ^ "bob");

val it = ("billybob",12) : string * int

Craig Chambers 23 CSE 341

Expression-orientation

Function body is a single expression

fun square(x:int):int = x * x

• not a statement list

• no return keyword needed

Like equality in math

• a call to a function is equivalent to its body,
after substituting its formals for the actuals in the call

square(3) ⇔ (x*x)[x→3] ⇔ 3*3

There are no statements in ML, only expressions

• simplicity, regularity, and orthogonality in action

What would be statements in other languages
are recast as expressions in ML

Expression Orientation: A Big Idea

Craig Chambers 24 CSE 341

If expression

General form:

if test then e1 else e2

• return value of either e1 or e2 ,
based on whether test is true or false

• cannot omit else part

- fun max(x:int, y:int):int =

= if x >= y then x else y;

val max = fn : int * int -> int

Like ?: operator in C

• don’t need the separate if statement

Craig Chambers 25 CSE 341

Static typechecking of if expression

What are the rules for typechecking an if expression?

What’s the type of the result of if ?

Some basic principles of typechecking:

• values are members of types

• the type of an expression must include all the values that
might possibly result from evaluating that expression at
run-time

Requirements on each if expression:

• the type of the test expression must be bool

• the type of the result of the if must include whatever values
might be returned from the if

• the if might return the result of either e1 or e2

A solution: e1 and e2 must have the same type,
and that type is the type of the result of the if expression

Craig Chambers 26 CSE 341

Let expression

An expression that introduces a new nested scope
with local variable declarations

• unlike { ... } statements in C, which don’t compute results

General form:

let val id 1: type 1 = e1
...
val id n: type n = en

in
ebody

end

• type i are optional; they’ll be inferred

Evaluates each ei and binds it to id i , in turn

• each ei can refer to the previous id 1..id i-1 bindings

Evaluates ebody and returns it as the result of the let

expression

• can refer to all the id 1..id n bindings

The id i bindings disappear after ebody is evaluated

• they’re in a nested, local scope

Craig Chambers 27 CSE 341

Example scopes

- val x = 3;

val x = 3 : int

- fun f(y:int):int =

= let

= val z = x + y

= val x = 4

= in

= (let

= val y = z + x

= in

= x + y + z

= end)

= + x + y + z

= end ;

val f = fn : int -> int

- val x = 5;

val x = 5 : int

- f(x);

???

