
Craig Chambers 1 CSE 341

CSE 341: Programming Languages

Explore several other programming paradigms

ML, Scheme, ...:
functional programming, lists, recursion, pattern-matching,
polymorphic typing, type inference

Smalltalk , Java, ...:
object-oriented programming

Prolog, ...:
logic programming

Also explore advanced programming environments

• interactive interpreters (e.g. ML, Scheme)

• graphical environments (Smalltalk)

Craig Chambers 2 CSE 341

Course outline

1 lecture: Concepts

4 weeks: ML

1 week: Scheme

2 weeks: Smalltalk (really, Squeak)

1 week: Java, GJ

1 week: Prolog, CLP(R)

1 lecture: Wrap-up

Homework exercises and a free-form project
for functional and OO sections

• 2-person teams allowed

Midterm and final exam

Craig Chambers 3 CSE 341

Why study programming languages?

“But if thought corrupts language , language can also
corrupt thought . A bad usage can spread by tradition and
imitation even among people who should and do know
better.”
George Orwell, Politics and the English Language, 1946

“If you cannot be the master of your language, you must be its
slave.”
Richard Mitchell

“A different language is a different vision of life.”
Federico Fellini

“The language we use ... determines the way in which we view
and think about the world around us.”
The Sapir-Whorf hypothesis

Craig Chambers 4 CSE 341

Course motivation and objectives

Hypothesis:
programming language shapes programming thought

Goal: learn several new, interesting, mind-expanding languages

• can conceive of and design better programs if exposed to
alternative, more expressive programming languages &
constructs

• can apply abstraction better with practice

Ability to select right language for task

Easier to learn new languages

Ability to design “little languages”

Appreciation for programming environment support facilities

Appreciation for rich libraries

Craig Chambers 5 CSE 341

Language design goals

Some end goals:

• rapid development

• ease of maintenance

• reliability, safety

• ease of learning

• portability

• efficiency

Some means to these goals:

• readability

• writability

• simplicity

• orthogonality

• expressiveness

Many goals in conflict
⇒ language design is an engineering & artistic activity
⇒ need to consider target audience’s needs

Craig Chambers 6 CSE 341

Language design target audiences

Scientific, numerical computing

• Fortran, APL, ZPL

Symbolic computing

• Lisp, Scheme, ML, Prolog, Smalltalk

Systems programming

• C, C++, Modula-3

Applications programming

• C, C++, Modula-3, Java, Lisp, Scheme, ML, Smalltalk, ...

Scripting, macro languages

• csh, Perl, Tcl, Excel macros, ...

Specialized languages

• SQL, LATEX, PostScript, Unix regular expressions, ...

Craig Chambers 7 CSE 341

Main programming language concepts

Separation of syntax, semantics, and pragmatics

• EBNF to specify syntax precisely

• semantics is more important than syntax

• pragmatics: programming style, intended uses, etc.

Control structures

• iteration, conditionals; exceptions

• procedures, functions; recursion

• first-class functions; message passing

• backtracking in logic languages

• parallelism

Data structures and types

• atomic types: numbers, chars, bools

• type constructors: records, tuples, lists, arrays, functions, ...

• user-defined abstract data types (ADTs); classes

• polymorphic/parameterized types, ADTs, classes

Static vs. dynamic typing; type inference

Lexical vs. dynamic scoping

Eager vs. lazy evaluation

Craig Chambers 8 CSE 341

Some good language design principles

Strive for a simple, regular model

• for evaluation

• for data reference

• for memory management

Be expression-oriented

Use heap-allocated data with automatic garbage collection

Include sophisticated abstraction mechanisms

• for control

• for data

Include polymorphic static type checking

Have a complete & precise language specification

• full run-time error checking for cases not detected statically

Craig Chambers 9 CSE 341

Partial history of programming languages

Fortran

60

70

80

90

Fortran77

Fortran90

Fortran66

Algol 60
Lisp

BASIC

Simula67

Pascal

Smalltalk

C

COBOL

SML

Ada
Common Lisp

C++

Cecil

Prolog

Java
HPF

Scheme

ZPL

00
EML

MultiJava

Self

CLOS

GJ

Craig Chambers 10 CSE 341

ML

Main features:

• expression-oriented

• list-oriented, garbage-collected heap-based

• functional

• functions are first-class values

• largely side-effect free

• strongly, statically typed

• polymorphic type system

• automatic type inference

• pattern matching

• exceptions

• modules

• highly regular and expressive

Designed as a Meta Language for automatic theorem proving
system in mid 70’s by Milner et al.

Standard ML: 1986

SML’97: 1997

Exemplifies Caml, Haskell, Miranda

Craig Chambers 11 CSE 341

Interpreter interface

Read-eval-print loop

• read input expression

• reading ends with semi-colon

• = prompt indicates continuing expression on next line

• evaluate expression

• print result

• repeat

- 3 + 4;

val it = 7 : int

- it + 5;

val it = 12 : int

- it + 5;

val it = 17 : int

it (re)bound to last evaluated value,
in case you want to use it again

REPLs: A Big Idea™

Craig Chambers 12 CSE 341

Basic ML data types and operations

int

• ~, +, - , * , div , mod; =, <>, <, >, <=, >=; real , chr

real

• ~, +, - , * , / ; <, >, <=, >= (no equality);
floor , ceil , trunc , round

bool : different from int

• true , false

• =, <>; orelse , andalso

string

• e.g. "I said \"hi\"\tin dir C:\\stuff\\dir\n"

• =, <>, ^

char

• e.g. #"a" , #"\n"

• =, <>; ord , str

Craig Chambers 13 CSE 341

Variables and binding

Variables declared and initialized with a val binding:

- val x:int = 6;

val x = 6 : int

- val y:int = x * x;

val y = 36 : int

Variable bindings cannot be changed!

• unlike assignment in C

• like equality in math

Variables can be bound again,
but this shadows the previous definition

• e.g. it

Variable types can be omitted

• they will be inferred by ML based on the type of the r.h.s.

- val z = x * y + 5;

val z = 221 : int

Binding, not Assignment: A Big Idea

Type Inference: A Big Idea

Craig Chambers 14 CSE 341

Strong, static typing

ML is statically typed : it will check for type errors statically
(i.e., when programs are entered, not when they’re run)

ML is strongly typed : it catches all type errors

• unlike C’s cast, union , void* , ...

Type errors can look weird, given ML’s fancy type system

E.g.:

- asd;

Error: unbound variable or constructor: asd

- 3 + 4.5;

Error: operator and operand don’t agree

 operator domain: int * int

 operand: int * real

 in expression:

 3 + 4.5

- 3 / 4;

Error: overloaded variable not defined at type

 symbol: /

 type: int

Strong, Static Typing: A Big Idea

Craig Chambers 15 CSE 341

Records

ML records are like C structs

• allow heterogeneous element types, but fixed # of elements

A record type:

{name:string, age:int}

• field order doesn’t matter

A record value:

{name="Bob Smith", age=20}

Can construct record values from expressions for field values

{name = "Bob " ^ "Smith",
age = 18+num_years_in_college}

As with any other value, can bind record values to variables

- val bob = {name="Bob " ^ "Smith",

= age=18+num_years_in_college};

val bob = {age=20,name="Bob Smith"}
: {age:int,name:string}

Craig Chambers 16 CSE 341

More on records

Can extract record fields using #fieldname function

- val bob’ = {name= #name(bob),

= age= #age(bob)+1};

val bob’ = {age=21,name="Bob Smith"} : {...}

Cannot assign to a record’s fields

• an immutable data structure

Craig Chambers 17 CSE 341

Tuples

Like records, but fields ordered by position, not label

Useful for pairs, triples, etc.

A tuple type:

string * int

• order does matter

A tuple value:

("Joe Stevens", 45)

As with any other value, can bind tuple values to variables

- val joe = ("Joe "^"Stevens", 25+num_jobs*10);

val joe = ("Joe Stevens",45) : string * int

Can extract record fields using #pos function

- val joe’ = (#1(joe), #2(joe)+1);

val joe’ = ("Joe Stevens",46) : string * int

Cannot assign to a tuple’s components

• another immutable data structure

Craig Chambers 18 CSE 341

Lists

ML lists are like C linked lists, but built-in

• require homogeneous element types,
but variable # of elements

A list type:

int list

• in general: T list , for any type T

A list value:

[3, 4, 5]

Empty list: [] or nil

Craig Chambers 19 CSE 341

Basic operations on lists

Add to front of list: ::

- val l1 = 3::(4::(5::nil));

val l1 = [3,4,5] : int list

- val l2 = 2::l1;

val l2 = [2,3,4,5] : int list

Look up the first (“head”) element: hd

- hd(l1) + hd(l2);

val it = 5 : int

Extract the rest (“tail”) of the list: tl

- val l3 = tl(l1);

val l3 = [4,5] : int list

- val l4 = tl(tl(l3));

val l4 = [] : int list

- tl(l4); (* or hd(l4) *)

uncaught exception Empty

Cannot assign to a list’s elements

• another immutable data structure

Craig Chambers 20 CSE 341

First-class values

All of ML’s data values are first-class

• there are no restrictions on how they can be created, used,
passed around, bound to names, stored in other data
structures,

One consequence:
can nest records, tuples, lists arbitrarily

A legal value, and its type:

{foo=(3, 5.6, "seattle"),
bar=[[3,4], [5,6,7,8], [], [1,2]]}

: {bar:int list list, foo:int*real*string}

All values are first-class: A Big Idea

Craig Chambers 21 CSE 341

Reference data model

A variable refers to a value (of whatever type), uniformly

A record, tuple, or list refers to its element values, uniformly

• all values are implicitly referred to by pointer

A variable expression evaluates to
a reference to the value that the variable was bound to

A variable binding makes the l.h.s. variable
refer to its r.h.s. value

No implicit copying upon binding, parameter passing, storing in
a data structure

• like Java, Scheme, Smalltalk, ...: all high-level languages

• unlike C, where non-pointer values are copied

• C arrays?

Reference-oriented values are heap-allocated (logically)

• optimized for scalar values like ints, reals, chars, bools, nil

Reference Data Model: A Big Idea

