
Guest Lecture

Secure Android Application
Development

June 5th 2020

Sophie Tian
shuxut@cs.washington.edu

Slides from:
Franziska (Franzi) Roesner
Associate Professor, CSE

franzi@cs.washington.edu

http://cs.Washington.edu
http://cs.washington.edu

Roadmap

• Part 1: What can go wrong?
• Part 2: How are mobile platforms (Android)

designed for security?
• Part 3: Best practices for mobile (Android)

app developers

6/4/20 Franziska Roesner 2

What can go wrong?
“Threat Model” 1: Malicious applications

6/4/20 Franziska Roesner 3

What can go wrong?
“Threat Model” 1: Malicious applications

Example attacks:
– Premium SMS messages
– Track location
– Record phone calls
– Log SMS
– Steal data
– Phishing

6/4/20 Franziska Roesner 4

Tip: Don’t do
these things! :)

What can go wrong?
“Threat Model” 2: Vulnerable applications

Example concerns:
– User data is leaked or stolen
• (on phone, on network, on server)

– Application is hijacked by an attacker

6/4/20 Franziska Roesner 5

Mobile Platform Security Features

Goal: Limit how much harm developers of
malicious or buggy applications can do!

A key feature: Application isolation

Also:
– Secure hardware
– Full disk encryption
– Modern memory protections (e.g., ASLR)
– Application signing
– App store review

6/4/20 Franziska Roesner 6

Applications are Isolated

• From each other
– Run in separate processes
– With separate UIDs

Process.pid #=> 95291
Process.uid #=> 501

• And from the system
– No shared accessible file system
– No default access to devices

6/4/20 Franziska Roesner 7

Since 5.0: ART (Android runtime)
replaces Dalvik VM to run apps natively

Permissions
Prompts (time-of-use)

6/4/20 Franziska Roesner 8

Manifests (install-time)

Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).
• Big change! Now app developers needed to check

for permissions or catch exceptions.

6/4/20 Franziska Roesner 9

Best Practices for Mobile App
Developers

1. Only ask for the permissions you need
2. Use “internal storage” for sensitive data
3. Validate input from external sources (incl. users)
4. Encrypt network communications
5. Don’t hard-code secrets in source code
6. Use existing cryptography support (carefully)
7. Be careful with inter-process communications
8. Be careful about libraries you include

More: https://developer.android.com/training/articles/security-tips

6/4/20 Franziska Roesner 10

https://developer.android.com/training/articles/security-tips

1. Only ask for permissions you need

Apps are often “overprivileged”. Early (2011) study:

6/4/20 Franziska Roesner 11

[Felt et al.]

2. Use “internal storage” for
sensitive data

Internal storage is:
– Not accessible to other apps
– Deleted when the app is uninstalled

External storage (like SD cards) are globally readable
and writable.

Even better, encrypt data (EncryptedFile).

Interesting tutorial:
https://www.tutorialspoint.com/android/android_internal_storage.htm#:~:text=Int
ernal%20storage%20is%20the%20storage,when%20user%20delete%20your%20applica
tion.

6/4/20 Franziska Roesner 12

https://www.tutorialspoint.com/android/android_internal_storage.htm

3. Validate input from external
sources (including users)

Check your assumptions about input!
– From users, from other apps, from web
– Length? Format?
– Can cause issues like buffer overflow attacks

(in native code, not Java) or SQL injections
(when sent to server)

– Be careful with WebViews

6/4/20 Franziska Roesner 13

4. Encrypt network communications

Use HTTPS! This means user data will not be
readable over the network.

HttpsURLConnection extends HttpURLConnection with support for
https-specific features.

6/4/20 Franziska Roesner 14

URL url = new URL("https://www.yourserver.com");
HttpsURLConnection urlConnection =

(HttpsURLConnection) url.openConnection();
urlConnection.connect();
InputStream in = urlConnection.getInputStream();

5. Don’t hard-code secrets in source code

6/4/20 Franziska Roesner 15

private static String SECRET_KEY = "8badcafef00ddead";

GreatApp.apk

const string v0, "8badcafef00ddead”
sput-object v0, Ledu/washington/cs/cse484/simplenotepad/

CryptoHelper;->SECRET_KEY:Ljava/lang/String;

CryptoHelper.java

CryptoHelper.smali

Instead, use Android Keystore

Allows you to create and store secret values.

Prevents extraction of keys by:
1. Making sure they never enter the

application process
2. Use of secure hardware

6/4/20 Franziska Roesner 16

6. Use existing cryptography
libraries (carefully)

Do not write your own cryptography!
Unless you are a cryptographer J

Follow recommended best practices for
parameter selections:
https://developer.android.com/guide/topics/security/cryptography

6/4/20 Franziska Roesner 17

https://developer.android.com/guide/topics/security/cryptography

7. Be careful with inter-process
communications

• Primary mechanism in Android: Intents
– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name
• e.g., com.example.testApp.MainActivity (our best

friend J)
– Implicit: specify action (e.g., ACTION_VIEW)

and/or data (URI and MIME type)
• Apps specify Intent Filters for their components.

6/4/20 Franziska Roesner 18

Eavesdropping and Spoofing

• Buggy apps might accidentally:
– Expose their component-to-component

messages publicly à eavesdropping
– Act on unauthorized messages they receive
à spoofing

6/4/20 Franziska Roesner 19

[Chin et al.]

Permission Re-Delegation

• An application without a permission gains
additional privileges through another application.

• Settings application is
deputy: has permissions,
and accidentally exposes
APIs that use those
permissions.

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

6/4/20 Franziska Roesner 20

8. Be careful about libraries you
include

Libraries run in the context of the application
–> they can use all the same permissions!

6/4/20 Franziska Roesner 21

Best Practices for Mobile App
Developers

1. Only ask for the permissions you need
2. Use “internal storage” for sensitive data
3. Validate input from external sources (incl. users)
4. Encrypt network communications
5. Don’t hard-code secrets in source code
6. Use existing cryptography libraries (carefully)
7. Be careful with inter-process communications
8. Be careful about libraries you include

More: https://developer.android.com/training/articles/security-tips

6/4/20 Franziska Roesner 22

Questions?

https://developer.android.com/training/articles/security-tips

