
Java Refresher

Roadmap

● Inheritance
● Generics
● Anonymous Inner Classes
● Lambdas (and "::" notation)

Inheritance

● Interfaces: a promise that you will implement these methods
○ Interfaces can only implement other interfaces
○ A class can implement many interfaces
○ Examples: Comparable interface

● Abstract classes: like interfaces but has some fully implemented methods as well
○ Can have abstract functions that are only defined in subclasses like interfaces
○ Also allows you to define shared member variables and functions for all subclasses
○ Examples: Pets all have a name (inherited member variable), are adopted the same way (function

defined in abstract class) but eat different foods (abstract function defined only in subclasses)

● Regular class: fully defined behaviors that you want to add to
○ All functions in the parent class have been implemented and are inherited
○ Usually would use this to add more specific behavior by changing implementation or adding new

methods

Inheritance common errors and tips

● Be careful:
○ Make sure not to redefine a variable you inherited from a parent class
○ Check and make sure that you are using the same method signature (return types and parameter

types) when overriding inherited methods, otherwise this is actually overloading
○ These might lead to undefined and weird behaviors! :(

● Remember:
○ You can only subclass one class, but you can implement as many interfaces as you want
○ Subclasses are able to access and change public and protected member variables of parent
○ You must implement interface methods and all abstract superclass methods

Switch statements

● A form of a conditional with different execution paths

public enum EssentialGeometry { INSIDE, ON_EDGE, OUTSIDE };
...
EssentialGeometry where = EssentialGeometry.INSIDE;
switch (where) {
 case ON_EDGE:
 // do the edgy things
 break;
 case INSIDE:
 // do the inside things but also fall through
 // and do the OUTSIDE things because no break statement;
 case OUTSIDE:
 // do the outside things
 break;
 default:
 // do default things
 // automatically falls through
}

Private class fields are often labelled with a
lowercase “m” at the front
This notation comes from AOSP (Android Open Source Project) Code Style Guidelines for Contributors:

Follow Field Naming Conventions

● Non-public, non-static field names start with ‘m’.
● Static field names start with ‘s’.
● Other fields start with a lower case letter.
● Public static final fields (constants) are ALL_CAPS_WITH_UNDERSCORES.

For example:

private float mCircleRadius, mThumbRadius;

private final Paint mPaintStart, mPaintEnd;

http://source.android.com/source/code-style.html#follow-field-naming-conventions

Enums

An enum type is a special data type that restricts a variable to be a set of predefined
constants

public enum EssentialGeometry { INSIDE, OUTSIDE };

...

EssentialGeometry where = EssentialGeometry.INSIDE;

Generics
Basically, abstraction over types:

Point<Integer>, Point<Double>

// Type abstraction: abstract over element type

Interface List<E> { // Lets us use types such as:

Boolean add(E n); // List<Integer>

E get(int index); // List<String>

} // List<List<Double>>

Anonymous Inner Classes (1/3)

● In Java, Anonymous Inner Classes are inner classes (or a non-static class
that’s nested inside another class)

● Anonymous classes don’t have a name and are often used to make an
instance of an object that has slightly different methods of another class or
interface. This way, you don’t have to actually make a subclass of a class.

● You’re going to see this type of class in some of our homework when
implementing something called “listeners”

Anonymous Inner Classes (2/3)
public class ExActivity extends AppCompatActivity {

private View.OnClickListener mClickListener = new View.OnClickListener() {
public void onClick(View v) {

if (mButton!=v) {
return;

}
}

}; // remember to end this statement with a semicolon
}

Anonymous Inner Classes (3/3)

Lambdas

What are Lambda expressions in Java?

- block of code that can be passed around to execute
- Instances of functional interfaces
- Think of it as using code as data
- Useful for anonymous classes and functional interfaces, allows compact

instances of one method classes
- This will come up later in the course when dealing with callbacks!
- Once instantiated, you can re-use it! Treat it is as a function

Lambda Simple Example
An example functional interface

 interface FuncInter1

 {

 int operation(int a, int b);

int multiplication(int a, int
b);

 }

Implementing interface w/ lambda
function

FuncInter1 add =

(int x, int y) -> x + y;

You can reuse this now!

add.operation(2, 3) returns 5

add.multiplication(2, 3) return 5

Another Example but using : : operator
:: is a method reference, same as using lambda but even shorter and readable

Syntax of :: operator <Class name>::<method name>

Lambda Example

numList.forEach(e -> System.out.print(e));

This does the same thing!

numList.forEach(System.out::print)

