University of Washington — Computer Science & Engineering

CSE333 A&B Autumn 2025 Midterm: Version A
Last Name:
First Name:
Student ID Number:
UWNetlID:

All work is my own. | had no prior knowledge of the
exam contents nor will | share the contents with others
in CSE333 who haven't taken it yet. Violation of these
terms could result in a failing grade. (please sign)

Do not turn the page until 5:35 pm.
Instructions

e This exam contains 22 pages, including this cover page. Put your final answers in the boxes
and blanks provided. You may make use of the ‘overflow box’ on page 13 for additional
answer space.

o The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are
allowed one 5”x8” index card (double-sided) of handwritten notes.

e Please silence and put away all cell phones and other mobile or noise-making devices.

® You have 50 minutes to complete this exam.

Advice

e Read questions carefully before starting. Skip questions that are taking a long time.
e Read all questions first and start where you feel the most confident.

e Relax. You are here to learn.

Question 1 2 3 4 5 6 Total

Possible Points 9 7 12 13 12 1 54

Version A

1. Half Baked (C Preprocessor)

UWNetID:

Suppose you have the following four C source files:

baker.c

ingredients.h

#include "ingredients.h"
#include "recipe.h"

grams_t measure(int scoops) {
return SUGAR * scoops;

¥

#ifndef INGREDIENTS_H_
#define INGREDIENTS_H_

typedef double grams_t;
grams_t measure(int scoops);

#endif

recipe.h

main.c

#ifndef RECIPE_H_
#define RECIPE_H_

#include "ingredients.h"
#define OVEN_TEMP 356
#define SUGAR OVEN_TEMP / 10
#define MIX(x) x + 3

#endif

#include "ingredients.h"
#include "recipe.h"

int printf(const char *format, ...);

int main() {
int scoops = SUGAR;
grams_t batter = measure(
scoops + OVEN_TEMP);
printf("%f\n", batter)
printf("%d\n", MIX(2 * 3));
return 9;

a) Show the resulting code for main.c after it is processed by the C preprocessor (i.e., the result of

the command cpp -E -P main.c).

Hint: The C preprocessor does not analyze the C code it produces for correctness.

Version A UWNetID:

b) You attempt to create an executable using the following command:
gcc -Wall -g -std=c17 -o main main.c
If the executable main is successfully created, what is its output to the console when run (i.e.,

what is ‘printed’ to standard output)? If an executable is not successfully created then explain the
problem(s) briefly and the changes necessary to produce an executable successfully.

2. Pizza My Heart (C++ classes)

Assume the following code compiles and executes with no errors:

pizza.cc

#include <iostream>
#include <cstdlib>

using namespace std;

class Pizza {
public:
Pizza() : slices_(8) { cout << "Bake whole pizza\n"; }
Pizza(int s) : slices_(s) {
cout << "Bake " << slices_ <<

slice pizza\n";
}

Pizza(const Pizza& p) : slices_(p.slices_) {

Version A UWNetID:

cout << "Clone << slices_ <x< slice pizza\n";

}
Pizza& operator=(const Pizza& p) {
cout << "Replace " << slices_ <<
<< p.slices_ << slice pizza\n";
if (this !'= &p) slices_ = p.slices_;
return *this;

slice pizza with "

}
~Pizza() A

cout << "Eat " << slices_ << " slice pizza\n";
}

int slices() const {
return slices_;

private:
int slices_;

b

Pizza deliver(Pizza p) {
cout << "Delivering pizza...\n";
return p;

int main() {
Pizza a(8);
Pizza b(4);
cout << "--1--\n";
b = a;

cout << "--2--\n";
Pizza ¢ = deliver(a);

cout << "--3--\n";
return EXIT_SUCCESS;

Version A UWNetID:

In the space below, write what is printed to standard output. You should assume that all copy
constructors, constructors, assignment operators, and destructors are called as specified by the
C++ language and not eliminated by possible compiler optimizations.

3. What’s The Point? (Memory Diagrams)

Assume the following code compiles and executes with no errors:

point.c

#include <stdio.h>
#include <stdlib.h>

typedef struct point {
int x, vy;
} Point;

Version A UWNetID:

Point* NewPoint(int x, int y) {
Point* r = (Point*) malloc(sizeof(Point));
r->x = Xx;
r->y =y,
return r;

int Shift(Point p, Point* r) {
p.y += 100;
r->x += 1;
return p.y + r->x;

void Swap(Point* p, Point q) {
int tmp = p->Xx;
p->Xx = Qq.X;
g.x = tmp;
// ===== DRAW MEMORY DIAGRAM HERE =====
printf("%d %d\n", p->x, q.x);

int main(void) {
Point a = {1, 2};
Point* b = NewPoint(10, 20);
Point c = *b;

int num = Shift(a, b);
Swap(&a, c);

printf("%d\n", num);
printf("%d %d\n", a.x, a.y);
printf("%d %d\n", b->x, b->y);

free(b);
return EXIT_SUCCESS;

Version A UWNetID:

a) Draw a memory diagram of the same format as the example on the following page, showing the
content of process memory when execution reaches the comment “// ===== DRAW MEMORY
DIAGRAM HERE =====", Make sure to carefully distinguish between local stack variables and
heap-allocated memory and to have boxes for the stack frames of each relevant function.

Version A UWNetID:

b) When executed what does this program write to standard output on the console?

Example memory diagram, of the form you’ll draw in problem 3a. NOTE: Your solution may have
completely different variables, pointers and stack frames than this drawing! It is just showing you
how to draw such information.

Stack

Func 1 struct1 | val 3
varl | vall val 4
Func 2 d
var2 | val2 ptr1 .’/

Version A UWNetID:

4. Ring Around the Rosie, a Pocket Full of POSIX (POSIX 1/0)

The following program is designed to read from a source file and write to a destination file, up to
100 bytes at a time, until the entire contents have been copied. For simplicity, recoverable system
call errors such as EINTR and EAGAIN are not handled. Fill in the appropriate blanks so that the
program executes as intended while avoiding leaking system resources.

Caution: Not all blanks need to be used.

posix.c

#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h> // For file permissions

#define BUF_SIZE 100

int main(int argc, char** argv) {
if (argc !'=) A

fprintf(stderr, "usage: %s SRC_FILE DST_FILE\n", argv[e]);
return EXIT_FAILURE;

}
int input_fd = open(, O_RDONLY);
if (input_fd < @) {

perror("Couldn't open input file.");

return EXIT_FAILURE;

}
// Create file if needed, truncate existing, give user RW permissions
int output_fd = open(, O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR);
if (output_fd < @) {
perror("Couldn't open output file.");

return EXIT_FAILURE;

}
char buffer[BUF_SIZE];

ssize_t bytes_read;

Version A UWNetID:

while ((bytes_read = read(input_fd, ,)) > 0) {

ssize_t bytes_written = 0;

while (bytes_written <) |

ssize_t result = write(output_fd, buffer + bytes_written,
bytes_read - bytes_written);
if (result < 9) {
perror("Error copying.");

return EXIT_FAILURE;

}
bytes_written +=
}
}
if (< 0) {
perror("Error processing entire file.");
return EXIT_FAILURE;
}

return EXIT_SUCCESS;

Describe a scenario, if any, when buffered 1/O is preferable to unbuffered I/O. Justify your answer.

Describe a scenario, if any, when unbuffered I/O is preferable to buffered I/0O. Justify your answer.

10

Version A UWNetID:

5. The Forever Purge (HW1 extension)

Beginning with the LinkedList (LL) implementation from HW1 we would like to add a new

function to its public interface. This new function should remove all elements from the LL that
match the given payload and return the number of elements removed. The function should adhere
to the following specification:

Function declaration (prototype) to be added into LinkedList.h

// Return the number of elements removed.

// 11 - LinkedList to search

// payload - Elements containing this payload will be purged from 11

// May assume that the 11 is valid, but may have zero elements

// May assume that you are passed a valid pointer to a Payload_Compare()

// function that returns @ if the elements match

int LinkedList_Purge(LinkedList* 11, LLPayload_t payload,
LLPayloadFreeFnPtr payload_free_function,
int(*Payload_Compare) (LLPayload_t, LLPayload_t));

Give an implementation of LinkedList Purge as it would appear in LinkedList.c. A copy of the
LinkedList.h and LinkedList_priv.h files are included at the end of the exam, and you may remove
them from the exam to use for this question. They will not be scanned for grading. Your code may
allocate new data structures while it is executing, but should not allocate more data than needed
and should not cause any memory leaks. You may assume that any linked list functions that you
call will succeed, and you do not need to check for errors when you do that.

Complete the function definition to be added into LinkedList.c

int LinkedList_Purge(LinkedList* 11, LLPayload_t payload,
LLPayloadFreeFnPtr payload_free_function,
int(*Payload_Compare) (LLPayload_t, LLPayload_t)) {

11

Version A UWNetID:

6. Morale Booster

[1 pt; All non-empty answers receive this point] Select one member of the course staff. Describe
or draw an emoji representing that person.

12

Version A UWNetID:

Extra Work (“Overflow Box”):

You may put additional answers here so long as you indicate which question the work belongs to
and indicate in the original answer box that you put an answer in the ‘overflow box 1°.

13

Version A UWNetID:

Reference Material — These Pages NOT Scanned

Useful function reference related to POSIX /O

#include <fcntl.h>

// Opening a file; returns file descriptor, -1 on error
int open(const char *path, int flags,
/* mode_t mode */);

#include <unistd.h>

// Closing a file
int close(int £fd);

// Read from a file; returns bytes read, 0 at EOF, -1 on error
ssize_t read(int fd, void buf[count], size_t count);

// Write to a file; returns bytes written, -1 on error
ssize_t write(int fd, const void buf[count], size_t count);

#include <stdio.h>

// Print a system error message
void perror (const char *s);

14

Version A UWNetID:

Reference Material — These Pages NOT Scanned

LinkedList.h

//
/1
/1
1/
1/
1/
/1
/1
1/
1/

/1
1/
1/
1/
//
/1

1/
//
/1
1/
1/
//
//
/1

#ifndef HW1_LINKEDLIST_H_
#define HWT_LINKEDLIST_H_

#include <stdbool.h> // for bool type (true, false)
#include <stdint.h> // for uint64_t, etc.

LIETTTTTIEED LTI i i ini i i i inir i i ini i i ini i i inirrrrrrr

A LinkedList is a doubly-linked list.

We provide the interface to the LinkedlList here; your job is to fill
in the implementation holes that we left in LinkedList.c.

To hide the implementation of LinkedlList, we declare the "struct 11"
structure and its associated typedef here, but we *define* the structure
in the internal header LinkedList_priv.h. This lets us define a pointer
to LinkedlList as a new type while leaving the implementation details
opaque to the customer.

typedef struct 11 LinkedList;

LLPayload type definition:

For generality, a payload must be large enough to hold a pointer.

If the client's data is no bigger than a pointer, a copy of that
data can be stored in the LinkedlList, by casting it to the LLPayload
type. Otherwise, a pointer to the client's data is maintained in
the list.

typedef void* LLPayload_t;

When a customer frees a linked list or a contained node, they need
to pass in a pointer to a function which does any necessary freeing
of the payload. We invoke the pointed-to function once for each node
requiring freeing.

Additional Note: This is a function pointer. Please refer to the end of
Lecture 3 slides (Pointers, pointers, pointers...) for more detail on the
syntax and usage.

typedef void(*LLPayloadFreeFnPtr)(LLPayload_t payload);

15

Version A UWNetID:

// Allocate and return a new linked list. The caller takes responsibility for
// eventually calling LinkedList_Free to free memory associated with the list.
//

// Arguments: none.

// Returns:

// - the newly-allocated linked list (never NULL).

LinkedList* LinkedList_Allocate(void);

// Free a linked list that was previously allocated by LinkedList_Allocate.
//
// Arguments:
// - list: the linked 1list to free. It is unsafe to use "list" after this
// function returns.
// - payload_free_function: a pointer to a payload freeing function; see above
// for details on what this is.
void LinkedList_Free(LinkedList *1ist,
LLPayloadFreeFnPtr payload_free_function);

// Return the number of elements in the linked list.
//

// Arguments:

// - list: the list to query.

// Returns:

// - list length.

int LinkedList_NumElements(LinkedList *list);

// Adds a new element to the head of the linked list.

//

// Arguments:

// - list: the LinkedList to push onto.

// - payload: the payload to push; it's up to the caller to interpret and
// manage the memory of the payload.

void LinkedList_Push(LinkedList *1ist, LLPayload_t payload);

// Pop an element from the head of the linked list.

//

// Arguments:

// - list: the LinkedlList to pop from.

// - payload_ptr: a return parameter; on success, the popped node's payload
!/ is returned through this parameter.

16

Version A UWNetID:

1/
//
/1

//
//
/1
1/
1/
1/
//
/1

1/
//
/1
/1
1/
1/
//
/1
/1
1/

/1
1/
1/
//
//
/1
1/

/7
1/

Returns:
- false on failure (eg, the list is empty).
- true on success.

bool LinkedList_Pop(LinkedList *1ist, LLPayload_t *payload_ptr);

Adds a new element to the tail of the linked list.
This is the "tail" version of LinkedList_Push.

Arguments:

- list: the LinkedList to push onto.

- payload: the payload to push; it's up to the caller to interpret and
manage the memory of the payload.

void LinkedList_Append(LinkedList *1list, LLPayload_t payload);

When sorting a linked list or comparing two elements of a linked 1list,
customers must pass in a comparator function. The function accepts two
payloads as arguments and returns an integer that is:
-1 if payload_a < payload_b
© if payload_a == payload_b
+1 if payload_a > payload_b

Additional Note: This is a function pointer. Please refer to the end of
Lecture 3 slides (Pointers, pointers, pointers...) for more detail on the
syntax and usage.

typedef int(*LLPayloadComparatorFnPtr)(LLPayload_t payload_a,

LLPayload_t payload_b);

Sorts a LinkedList in place.

Arguments:

- list: the list to sort.

- ascending: if false, sorts descending; else sorts ascending.

- comparator_function: +this argument is a pointer to a payload comparator
function; see above.

void LinkedList_Sort(LinkedList *1ist, bool ascending,

LLPayloadComparatorFnPtr comparator_function);

LITTTTTT T T r i i i i i i i i 7 i i 7 i i i i i i i i r i i ri 0 ri 0 ii i i ii 2 i 00 iir i i i iz

Linked list iterator.

17

Version A UWNetID:

// Linked lists support the notion of an iterator, similar to Java iterators.
// You use an iterator to navigate forward through the linked list and remove
// elements from the list. You use LLIterator_Allocate() to manufacture a new
// iterator and LLIterator_Free() to free an iterator when you're done with it.
//

// If you use a LinkedList*() function to mutate a linked list, any iterators
// you have on that list become undefined (ie, dangerous to use; arbitrary

// memory corruption can occur). Thus, you should only use LLIterator*()

// functions in between the manufacturing and freeing of an iterator.

typedef struct ll_iter LLIterator; // same trick to hide implementation.

// Manufacture an iterator for the list. Caller is responsible for
// eventually calling LLIterator_Free to free memory associated with
// the iterator.

//

// Arguments:

// - list: the list from which we'll return an iterator.

//

// Returns:

// - a newly-allocated iterator, which may be invalid or "past the end" if
// the list cannot be iterated through (eg, empty).

LLIterator* LLIterator_Allocate(LinkedList *1list);

// When you're done with an iterator, you must free it by calling this
// function.

//

// Arguments:

// - iter: the iterator to free. Don't use it after freeing it.

void LLIterator_Free(LLIterator *iter);

// Tests to see whether the iterator is pointing at a valid element.
//

// Arguments:

// - iter: the iterator to test.

//

// Returns:

// - true: if iter is not past the end of the list.

// - false: if iter is past the end of the list.

bool LLIterator_IsValid(LLIterator *iter);

// Advance the iterator, i.e. move to the next node in the list. The

18

Version A UWNetID:

1/
//
/1
/7
1/
//
//
/1

1/
//
/1
1/
1/
1/

/1
1/
1/
//
/1
/1
1/
1/
1/
/1
/1
1/
1/
//
//
/1
1/
1/
1/

passed-in iterator must be valid (eg, not "past the end").

Arguments:

- iter: the iterator.

Returns:

- true: if the iterator has been advanced to the next node.

- false: if the iterator is no longer valid after the
advancing has completed (eg, it's now "past the end").

bool LLIterator_Next(LLIterator *iter);

Returns the payload of the list node that the iterator currently points
at. The passed-in iterator must be valid (eg, not "past the end").

Arguments:
- iter: the iterator to fetch the payload from.
- payload: a "return parameter" through which the payload is returned.

void LLIterator_Get(LLIterator *iter, LLPayload_t *payload);

Remove the node the iterator is pointing to. After deletion, the iterator

may be in one of the following three states:

- if there was only one element in the list, the iterator is now invalid
and cannot be used. In this case, the caller is recommended to free
the now-invalid iterator.

- if the deleted node had a successor (eg, the deleted node was the head),
the iterator is now pointing at its successor.

- if the deleted node was the tail, the iterator is now pointing at the
predecessor.

The passed-in iterator must be valid (eg, not "past the end").

Arguments:

- iter: the iterator to delete from.

- payload_free_function: invoked to free the payload.

Returns:

- false if the deletion succeeded, but the list is now empty.

- true if the deletion succeeded, and the list is still non-empty.

bool LLIterator_Remove(LLIterator *iter,

LLPayloadFreeFnPtr payload_free_function);

#endif // HW1_LINKEDLIST_H_

19

Version A UWNetID:

LinkedList_priv.h

#ifndef HW1_LINKEDLIST_PRIV_H_
#define HW1_LINKEDLIST_PRIV_H_

#include "./LinkedList.h" // for LinkedList and LLIterator

J/ orirrrnd

// Internal structures and helper functions for our LinkedList implementation.
//

// These would typically be located in LinkedList.c; however, we have broken

// them out into a "private .h" so that our unittests can access them. This

// allows our test code to peek inside the implementation to verify correctness.
//

// Customers should not include this file or assume anything based on

// its contents.
// |0 T T T T T T T T I I O I |

// A single node within a linked list.

//

// A node contains next and prev pointers as well as a customer-supplied
// payload pointer.

typedef struct ll_node {

LLPayload_t payload; // customer-supplied payload pointer
struct 1ll_node *next; // next node in list, or NULL
struct 1l_node *prev; // prev node in list, or NULL

} LinkedListNode;

// The entire linked list.

//

// We provided a struct declaration (but not definition) in LinkedList.h;

// this is the associated definition. This struct contains metadata

// about the linked list.

typedef struct 11 {
int num_elements; // # elements in the list
LinkedListNode *head; // head of linked list, or NULL if empty
LinkedListNode *tail; // tail of linked list, or NULL if empty

} LinkedList;

// A linked list iterator.
//
// We expose the struct declaration in LinkedList.h, but not the definition,
// similar to what we did above for the linked list itself.
typedef struct ll_iter {
LinkedList *list; // the list we're for
LinkedListNode *node; // the node we are at, or NULL if broken

20

Version A UWNetID:

} LLIterator;

// Remove an element from the tail of the linked list.

//

// This is the "tail" version of LinkedList_Pop, and the converse of
// LinkedList_Append.

//

// Arguments:

// - list: the LinkedList to remove from

// - payload_ptr: a return parameter; on success, the sliced node's payload
// is returned through this parameter.

// Returns:

// - false: on failure (eg, the list is empty).

// - true: on success.

bool LLSlice(LinkedlList *list, LLPayload_t *payload_ptr);

// Rewind an iterator to the front of its list.
//

// Arguments:

// - iter: the iterator to rewind.

void LLIteratorRewind(LLIterator *iter);

#endif // HW1_LINKEDLIST_PRIV_H_

21

Version A UWNetID:

Reference Material — These Pages NOT Scanned

22

	1. Half Baked (C Preprocessor)
	
	2. Pizza My Heart (C++ classes)
	
	
	3. What’s The Point? (Memory Diagrams)
	4. Ring Around the Rosie, a Pocket Full of POSIX (POSIX I/O)
	5. The Forever Purge (HW1 extension)
	6. Morale Booster
	Extra Work (“Overflow Box”):
	

