

University of Washington – Computer Science & Engineering
Winter 2020 Instructor: Justin Hsia 2020-02-14

Last Name:

First Name:

Student ID Number:

Name of person to your Left | Right

All work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in

CSE333 who haven’t taken it yet. Violation of these terms
could result in a failing grade. (please sign)

Do not turn the page until 5:00.
Instructions

• This exam contains 10 pages, including this cover page. Show scratch work for partial
credit, but put your final answers in the boxes and blanks provided.

• The last page is a reference sheet. Please detach it from the rest of the exam.
• The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed one page (US letter, double-sided) of handwritten notes.
• Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.
• You have 70 minutes to complete this exam.

Advice

• Read questions carefully before starting. Skip questions that are taking a long time.
• Read all questions first and start where you feel the most confident.
• Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 19 10 24 32 19 104

2

Question 1: You MAKE Me Whole [19 pts]

Let CFLAGS = -Wall -g -std=c11. The symbol “$^” means all sources.

(A) Complete the corresponding directed acyclic graph for the Makefile. [5 pt]

winter: rain.o snow.o clouds.o
 gcc $(CFLAGS) $^

snow: snow.o
 gcc $(CFLAGS) -o snow $^

rain.o: rain.c rain.h clouds.h
 gcc $(CFLAGS) –c rain.c

clouds.o: clouds.c clouds.h
 gcc $(CFLAGS) -c clouds.c

snow.o: snow.c clouds.h rain.h cold.h
 gcc $(CFLAGS) -c snow.c

clean:
 rm -f rain.o clouds.o winter snow

(B) Starting with only the source files (.c and .h) and Makefile, what should happen to the
following files if we run “make” followed by “make clean”? Use “C” for created, “CD” for
created and then deleted, and “U” for untouched (i.e. unchanged or not created). [4 pt]

rain.o ____ clouds.o ____ snow.o ____ winter ____

(C) Do we need a phony all target in Makefile? Briefly justify your response. [2 pt]

Yes / No

(D) [1] We run “make”. [2] We modify rain.h. [3] What should happen to the following files
when we run “make” again? Use “M” for modified and “U” for untouched. [4 pt]

rain.c ____ clouds.o ____ snow.o ____ snow ____

(E) Assuming that the two executables do different things, it turns out that there is something
inherently wrong with our project setup that will cause 1 of 2 possible compilation errors.
Identify the compilation errors and which target will cause them. Hint: what does every C
executable need? [4 pt]

Possible error: redefinition of main Target: winter

Possible error: missing main Target: snow

rain.c snow.c

rain.h cold.h clouds.h

clouds.c

SID: ____________

3

Question 2: PREPROCESS This! [10 pts]

Suppose we have the following files:

twoface.h: #ifdef DSWITCH
#define FACE(f) NULL
#else
#define FACE(f) (f * -2)
typedef int my_type;
#endif

twoface.c: #include <stdio.h>
#define f 2.0
#include "twoface.h"
int main(int argc, char** argv) {
 printf("%ld\n", (long) FACE(f));
 return 0; // EXIT_SUCCESS
}

(A) The header file is missing a header guard! Following the style guide for this class, what
name should we use for the guard macro? [2 pt]

(B) Complete the result of cpp -P -DSWITCH twoface.c below. Ignore the output of the
#include <stdio.h> directive. [5 pt]

int main(int argc, char **argv) {

}

(C) (Circle one) What will be happen when we try to compile gcc -DSWITCH twoface.c
and run a.out? [3 pt]

compiler
error

output
-4

output
0

output
4

4

Question 3: ORDER Up [24 pts]

We’re writing C software for restaurants to track orders using the following typedef-ed struct:

We use Order* head to track all orders and Order* curr to track the current order.
Assume both are defined in main. Because we cannot predict how many orders we will get,
Orders must be allocated individually on the heap.

(A) Draw a memory diagram for a small linked list of two orders. The first order is for table
3, served by "Andrew", and is for 1 of menu item #1. The second (and current) order is
for table 7, served by "Cheng", and is for 2 of menu item #0 and 4 of menu item #2.
Character arrays can be written as string literals. Don’t forget to include
variable and field names. [8 pt]

Stack Static Data / Literals

Heap

#define NUM_MENU_ITEMS 3

typedef struct order_st {

 int table; // table number

 char* server; // name of server

 int orders[NUM_MENU_ITEMS]; // # of each menu item ordered

 struct order_st* next; // next order in linked list

} Order;

// order of 3 of menu item #0 for table 333, served by Justin
Order example = {333, "Justin", {3, 0, 0}, NULL};

SID: ____________

5

(B) Below, complete the helper function CreateOrder() that generates a new, empty order
(i.e., 0 quantity of all menu items) with some specified field values. Assume that
*server doesn’t need to be deep-copied. NUM_MENU_ITEMS is #define-d. [8 pt]

// Returns a pointer to an empty order, or NULL on error.
Order* CreateOrder(int table, char* server) {
 Order* order = (Order*) malloc(sizeof(Order));
 if (order != NULL) {
 order->table = table;
 order->server = server;
 for (int i = 0; i < NUM_MENU_ITEMS; i++) {
 order->orders[i] = 0;
 }
 order->next = NULL;
 }
 return order;

}

(C) Recall that head and curr are local pointers in main. We are writing AddOrder that
takes a specified heap-allocated Order (e.g. the return value from CreateOrder) and
adds it to the end of the head list. If either head or curr is NULL, then they need to be
updated to point to this new Order, meaning we may need to update the values of both
head and curr in this function. Following good style guidelines, propose a suitable
declaration: [4 pt]

________ AddOrder(__);

(D) If we want to create a module for our Order system, indicate which file the following
would go in (checkmark): [4 pt]
 Order.h Order.c Restaurant.c

Order typedef from problem description

CreateOrder() definition from part B

CreateOrder() declaration

main()

6

Question 4: Time to Get in SHAPE [32 pts]

Abbrev: constructor (ctor), copy constructor (cctor), assignment (op=), destructor (dtor).

(A) Do we need accessor methods for Point? Briefly explain why or why not. [2 pt]

No, because the data members in Point are publicly-accessible by default.

(B) Write out a line of code that will disable the cctor inside the definition Point. [2 pt]

(C) What does a default Shape describe? [2 pt]

A point at the origin with random/garbage color.

(D) The member function Area returns the area of the Shape as a double. Propose a
suitable function signature (for the implementation file): [3 pt]

__ {

(E) The member function ChangeColor sets the Shape’s color to specified red, green, and
blue values. Propose a suitable function signature (for the implementation file): [3 pt]

__

__ {

struct Point {

 Point() : x(0), y(0) { }

 Point(int x, int y) : x(x), y(y) { }

 int x, y;

}; // struct Point

class Shape {

 public:

 Shape() : num_pts_(1), points_(new Point) { }

 Shape(const Shape& s); // DEEP copies data members

 Shape& operator=(const Shape& rhs); // DEEP copies

 ... // other methods mentioned in this question

 private:

 Point* points_; // array of num_pts_ points [Heap]

 size_t num_pts_; // # of points in shape

 uint8_t color[3]; // RGB values of shape color

}; // class Shape

SID: ____________

7

(F) points_ points to an array on the heap. Define a Shape member function Union()
that appends the points from a second Shape to points_ in this. Don’t worry about
duplicate points or self-unions. [10 pt]

void Shape::Union(const Shape& s) {

 Point *old = points_;

 points_ = new Point[num_pts_ + s.num_pts_]; // def ctor

 for (size_t i = 0; i < num_pts_; i++)

 num_pts_[i] = old[i]; // op=

 for (size_t j = 0; j < s.num_pts_; j++)

 num_pts_[num_pts_ + j] = s.points_[j]; // op=

 num_pts_ += s.num_pts_; // increase size by one

 delete[] old;

} // many valid solutions exist

(G) The inline definition of the Shape destructor is given below, but leads to a memory error
in our code! Briefly describe the issue and the fix (which may not be in the dtor): [4 pt]

 ~Shape() { delete[] points_; }

Issue:

Fix:

(H) Assume that the Shape cctor (definition not shown) does a deep copy of data members.
If s is a Shape with 2 points, how many times are each of the following invoked (count
both Shape and Point methods) during the execution of the friend non-member
function Reverse(s)? [6 pt]

Shape Reverse(const Shape& s) {

 Shape out = s;

 for (size_t i = 0; i < s.num_pts_; i++) {

 out.points_[i] = s.points_[s.num_pts_-1-i];

 }

 return out;
}

ctor ______ cctor ______ op= ______ dtor ______

8

Question 5: INPUT and OUTPUT and ERRORS, oh my! [19 pts]

(A) Assume that the C std lib is using an internal write buffer of 1024 bytes and we are
trying to write 2048 bytes total in 256-byte chunks. Assuming that all writes are
successful (i.e. no partial writes or errors), how many system calls do we invoke using C
std lib vs. POSIX? [4 pt]

write()

fwrite()

(B) Name a C function that we have used in this class that fits the descriptions: [4 pt]

Part of the C standard library, but doesn’t invoke a system call.

A POSIX system call that doesn’t have a C std lib equivalent.

(C) Convert the following two lines of C code into their C standard library equivalents. Do
NOT add any other lines (e.g. error checking): [5 pt]

POSIX: int fd = open("midterm.txt", O_RDONLY);
ssize_t n = read(fd, buf, 333*sizeof(int32_t));

C Std
Lib:

__;

__;

(D) Before exiting/terminating a C program, name the three categories of resources that we
have seen in this class that we need to make sure are cleaned up/closed: [3 pt]

(E) Briefly describe in what situations you prefer to use perror instead of fprintf to
stderr. [3 pt]

CSE 333 Reference Sheet (Midterm)
C Library Header – stdio.h
FILE // type of object containing info to control a stream

FILE* fopen (const char* filename, const char* mode);

int fclose (FILE* stream);

int fprintf (FILE* stream, const char* format, ...);

char* fgets (char* str, int num, FILE* stream);

size_t fread (void* ptr, size_t size, size_t count, FILE* stream);

size_t fwrite (const void* ptr, size_t size, size_t count, FILE* stream);

void perror (const char* str);

int ferror (FILE* stream); // returns non-zero if error on stream

C Library Header – stdlib.h
EXIT_SUCCESS // success termination code

EXIT_FAILURE // failure termination code

void* malloc (size_t size);

void* calloc (size_t num, size_t size); // zero-initialized block

void* realloc (void* ptr, size_t size); // change size of mem block *ptr

void free (void* ptr); // does nothing when ptr = NULL

void exit (int status); // terminate calling process

C Library Header – string.h
size_t strlen (const char* str); // # of chars, not including '\0'

char* strcpy (char* dst, const char* src); // copy chars

char* strcat (char* dst, const char* src); // append chars

int strcmp (const char* str1, const char* str2); // compare strings

• Versions that take a third parameter size_t num: strncpy(), strncat(), strncmp()

C Library Header – math.h
INFINITY // Infinity

NAN // Not-A-Number

float abs (float x); // absolute value

float pow (float base, float exp); // base raised to the power exp

float sqrt (float x); // square root

float ceil (float x); // round up (towards +∞)
float floor (float x); // round down (towards -∞)

• All of these functions are overloaded to work with double, too

POSIX Library Headers – fcntl.h, unistd.h, dirent.h
O_RDONLY // read-only flag

O_WRONLY // write-only flag

O_RDWR // read-write flag

O_APPEND // append (add to end) flag

DIR // type representing a directory stream

int open (char* pathname, int flags, ...); // open a file

int close (int fd); // close a file

ssize_t read (int fd, void* buf, size_t count); // read from file

ssize_t write (int fd, const void* buf, size_t count); // write to file

DIR* opendir (const char* dirname); // open a directory

int closedir (DIR* dirp); // close a directory

struct dirent* readdir (DIR* dirp); // read a directory

Error Library – errno.h
errno // # of the last error, usually checked against defined consts

EACCES // permission denied

EBADF // bad file/directory descriptor

EFAULT // bad address supplied

EINTR // interrupted function

EISDIR // is a directory

ENOTDIR // is not a directory

C++ Memory Allocation
new // allocate space for type, return pointer

new[] // allocate space for array of type, return pointer

delete // deallocate space indicated by pointer

delete[] // deallocate space of array indicated by pointer

Format Specifiers
Specifier Type
d / i signed decimal integer
u unsigned decimal int
x unsigned hexadecimal integer
f decimal floating point
c character
s string of characters
p pointer address

Streams
<stdio.h> POSIX <iostream>

stdin 0 std::cin

stdout 1 std::cout

stderr 2 std::cerr

