

University of Washington – Computer Science & Engineering
Winter 2020 Instructor: Justin Hsia 2020-02-14

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE333 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 5:00.
Instructions

• This exam contains 10 pages, including this cover page. Show scratch work for partial
credit, but put your final answers in the boxes and blanks provided.

• The last page is a reference sheet. Please detach it from the rest of the exam.
• The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed one page (US letter, double-sided) of handwritten notes.
• Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.
• You have 70 minutes to complete this exam.

Advice

• Read questions carefully before starting. Skip questions that are taking a long time.
• Read all questions first and start where you feel the most confident.
• Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 19 10 24 32 19 104

2

Question 1: You MAKE Me Whole [19 pts]

Let CFLAGS = -Wall -g -std=c11. The symbol “$^” means all sources.

(A) Complete the corresponding directed acyclic graph for the Makefile. [5 pt]

winter: rain.o snow.o clouds.o
 gcc $(CFLAGS) $^

snow: snow.o
 gcc $(CFLAGS) -o snow $^

rain.o: rain.c rain.h clouds.h
 gcc $(CFLAGS) –c rain.c

clouds.o: clouds.c clouds.h
 gcc $(CFLAGS) -c clouds.c

snow.o: snow.c clouds.h rain.h cold.h
 gcc $(CFLAGS) -c snow.c

clean:
 rm -f rain.o clouds.o winter snow

(B) Starting with only the source files (.c and .h) and Makefile, what should happen to the
following files if we run “make” followed by “make clean”? Use “C” for created, “CD” for
created and then deleted, and “U” for untouched (i.e. unchanged or not created). [4 pt]

rain.o _CD_ clouds.o _CD_ snow.o _C_ winter _U_

make runs the 1st target in the Makefile (winter), which builds all of the object files but
produces the default executable name (a.out). make clean doesn’t remove snow.o.

(C) Do we need a phony all target in Makefile? Briefly justify your response. [2 pt]

Yes / No Since we want to produce two different executables (winter, snow), we need
a target to invoke both of those targets.

(D) [1] We run “make”. [2] We modify rain.h. [3] What should happen to the following files
when we run “make” again? Use “M” for modified and “U” for untouched. [4 pt]

rain.c _U_ clouds.o _U_ snow.o _M_ snow _U_

Follow the DAG from rain.h to see that rain.o and snow.o are affected, but
clouds.o is not. Since we ran the winter target, we don’t attempt to rebuild snow.

rain.c snow.c

rain.h cold.h clouds.h

clouds.c

rain.o clouds.o snow.o

winter snow

3

(E) Assuming that the two executables do different things, it turns out that there is something
inherently wrong with our project setup that will cause 1 of 2 possible compilation errors.
Identify the compilation errors and which target will cause them. Hint: what does every C
executable need? [4 pt]

Possible error: redefinition of main Target: winter

Possible error: missing main Target: snow

Every executable needs a main function. winter and snow must have different mains in
order to do different things. snow.o is linked into both executables, so either it (and
snow) doesn’t have code for main, or two mains are linked into winter.

Possible error: missing symbols/functions from rain.o and
clouds.o

Target: snow

The snow.o target includes rain.h and clouds.h, but the snow target only includes
snow.o, meaning that it would be missing the implementations/definitions of anything it
needs from those interfaces.

4

Question 2: PREPROCESS This! [10 pts]

Suppose we have the following files:

twoface.h: #ifdef DSWITCH
#define FACE(f) NULL
#else
#define FACE(f) (f * -2)
typedef int my_type;
#endif

twoface.c: #include <stdio.h>
#define f 2.0
#include "twoface.h"
int main(int argc, char** argv) {
 printf("%ld\n", (long) FACE(f));
 return 0; // EXIT_SUCCESS
}

(A) The header file is missing a header guard! Following the style guide for this class, what
name should we use for the guard macro? [2 pt]

TWOFACE_H_

(B) Complete the result of cpp -P -DSWITCH twoface.c below. Ignore the output of the
#include <stdio.h> directive. [5 pt]

typedef int my_type;

int main(int argc, char **argv) {

 printf("%ld\n", (long) (2.0 * -2));

 return 0;

}

We have defined the symbol SWITCH in the command-line arguments to cpp, meaning
DSWITCH is not defined. The preprocessor also removes all comments.

(C) (Circle one) What will be happen when we try to compile gcc -DSWITCH twoface.c
and run a.out? [3 pt]

compiler
error

output
-4

output
0

output
4

The syntax is good, so will compile and execute as expected.

5

Question 3: ORDER Up [24 pts]

We’re writing C software for restaurants to track orders using the following typedef-ed struct:

We use Order* head to track all orders and Order* curr to track the current order.
Assume both are defined in main. Because we cannot predict how many orders we will get,
Orders must be allocated individually on the heap.

(A) Draw a memory diagram for a small linked list of two orders. The first order is for table
3, served by "Andrew", and is for 1 of menu item #1. The second (and current) order is
for table 7, served by "Cheng", and is for 2 of menu item #0 and 4 of menu item #2.
Character arrays can be written as string literals. Don’t forget to include
variable and field names. [8 pt]

Stack Static Data / Literals

Heap

#define NUM_MENU_ITEMS 3

typedef struct order_st {

 int table; // table number

 char* server; // name of server

 int orders[NUM_MENU_ITEMS]; // # of each menu item ordered

 struct order_st* next; // next order in linked list

} Order;

// order of 3 of menu item #0 for table 333, served by Justin
Order example = {333, "Justin", {3, 0, 0}, NULL};

6

(B) Below, complete the helper function CreateOrder() that generates a new, empty order
(i.e., 0 quantity of all menu items) with some specified field values. Assume that
*server doesn’t need to be deep-copied. NUM_MENU_ITEMS is #define-d. [8 pt]

// Returns a pointer to an empty order, or NULL on error.
Order* CreateOrder(int table, char* server) {
 Order* order = (Order*) malloc(sizeof(Order));
 if (order != NULL) {
 order->table = table;
 order->server = server;
 for (int i = 0; i < NUM_MENU_ITEMS; i++) {
 order->orders[i] = 0;
 }
 order->next = NULL;
 }
 return order;

 // ALTERNATE SOLUTION:
 // Order* order = (Order*) calloc(1, sizeof(Order));
 // if (order != NULL) {
 // order->table = table;
 // order->server = server;
 // }
 // return order;
}

(C) Recall that head and curr are local pointers in main. We are writing AddOrder that
takes a specified heap-allocated Order (e.g. the return value from CreateOrder) and
adds it to the end of the head list. If either head or curr is NULL, then they need to be
updated to point to this new Order, meaning we may need to update the values of both
head and curr in this function. Following good style guidelines, propose a suitable
declaration: [4 pt]

Google preferred: Order* AddOrder(Order* new_order, Order** curr);
Google preferred: Order* AddOrder(Order* new_order, Order** head);

Accepted: void AddOrder(Order* new, Order** head, Order** curr);

Return values preferred to output params; input params come before output params.

(D) If we want to create a module for our Order system, indicate which file the following
would go in (checkmark): [4 pt]
 Order.h Order.c Restaurant.c

Order typedef from problem description ✔

CreateOrder() definition from part B ✔

CreateOrder() declaration ✔

main() ✔

7

Question 4: Time to Get in SHAPE [32 pts]

Abbrev: constructor (ctor), copy constructor (cctor), assignment (op=), destructor (dtor).

(A) Do we need accessor methods for Point? Briefly explain why or why not. [2 pt]

No, because the data members in Point are publicly-accessible by default.

(B) Write out a line of code that will disable the cctor inside the definition Point. [2 pt]

Point(const Point& p) = delete;

(C) What does a default Shape describe? [2 pt]

A point at the origin (0, 0) with random/garbage color.

(D) The member function Area returns the area of the Shape as a double. Propose a
suitable function signature (for the implementation file): [3 pt]

double Shape::Area() const {

(E) The member function ChangeColor sets the Shape’s color to specified red, green, and
blue values. Propose a suitable function signature (for the implementation file): [3 pt]

void Shape::ChangeColor(const uint8_t red, const uint8_t green,

 const uint8_t blue) {

struct Point {

 Point() : x(0), y(0) { }

 Point(int x, int y) : x(x), y(y) { }

 int x, y;

}; // struct Point

class Shape {

 public:

 Shape() : num_pts_(1), points_(new Point) { }

 Shape(const Shape& s); // DEEP copies data members

 Shape& operator=(const Shape& rhs); // DEEP copies

 ... // other methods mentioned in this question

 private:

 Point* points_; // array of num_pts_ points [Heap]

 size_t num_pts_; // # of points in shape

 uint8_t color[3]; // RGB values of shape color

}; // class Shape

8

(F) points_ points to an array on the heap. Define a Shape member function Union()
that appends the points from a second Shape to points_ in this. Don’t worry about
duplicate points or self-unions. [10 pt]

void Shape::Union(const Shape& s) {

 Point *old = points_;

 points_ = new Point[num_pts_ + s.num_pts_]; // def ctor

 for (size_t i = 0; i < num_pts_; i++) // copy old

 num_pts_[i] = old[i];

 for (size_t j = 0; j < s.num_pts_; j++) // append new

 num_pts_[num_pts_ + j] = s.points_[j];

 num_pts_ += s.num_pts_; // increase size

 delete[] old; // deallocate old

} // many valid solutions exist

(G) The inline definition of the Shape destructor is given below, but leads to a memory error
in our code! Briefly describe the issue and the fix (which may not be in the dtor): [4 pt]

 ~Shape() { delete[] points_; }

Issue: Mismatched delete for a default-constructed Shape (i.e., delete[] on Point).

Fix: Update def ctor initializer list to use points_(new Point[1]) instead.

(H) Assume that the Shape cctor (definition not shown) does a deep copy of data members.
If s is a Shape with 2 points, how many times are each of the following invoked (count
both Shape and Point methods) during the execution of the friend non-member
function Reverse(s)? [6 pt]

Shape Reverse(const Shape& s) {

 Shape out = s;

 for (size_t i = 0; i < s.num_pts_; i++) {

 out.points_[i] = s.points_[s.num_pts_-1-i];

 }

 return out;
}

ctor __4__ cctor __2__ op= __6__ dtor __3__

cctor of Shape is called twice (out, return), each time calling 2 def ctor & 2 op= of
Point. There are an additional 2 op= of Point in the for-loop. The Shape dtor is
called on out after Reverse returns, which also destructs the 2 Points in its array.

9

Question 5: INPUT and OUTPUT and ERRORS, oh my! [19 pts]

(A) Assume that the C std lib is using an internal write buffer of 1024 bytes and we are
trying to write 2048 bytes total in 256-byte chunks. Assuming that all writes are
successful (i.e. no partial writes or errors), how many system calls do we invoke using C
std lib vs. POSIX? [4 pt]
write will invoke a system call every time (2048/256 =
8 times). fwrite will only invoke a system call when it
flushes its buffer (2048/1024 = 2 times).

write() 8

fwrite() 2

(B) Name a C function that we have used in this class that fits the descriptions: [4 pt]

Part of the C standard library, but doesn’t invoke a system call. e.g., strncpy, sqrt

A POSIX system call that doesn’t have a C std lib equivalent. e.g., opendir

(C) Convert the following two lines of C code into their C standard library equivalents. Do
NOT add any other lines (e.g. error checking): [5 pt]

POSIX: int fd = open("midterm.txt", O_RDONLY);
ssize_t n = read(fd, buf, 333*sizeof(int32_t));

C Std
Lib:

_FILE* file = fopen("midterm.txt", "r")____________________;

_size_t n = fread(buf, sizeof(int32_t), 333, file)_________;

(D) Before exiting/terminating a C program, name the three categories of resources that we
have seen in this class that we need to make sure are cleaned up/closed: [3 pt]

dynamically-allocated
memory

files / streams directories

(E) Briefly describe in what situations you prefer to use perror instead of fprintf to
stderr. [3 pt]

When there are multiple possible causes of the error, as perror will print out an
additional message related to errno. If there is a single cause of error, then a helpful
fprintf message will suffice.

