

CSE 333 19su Midterm Exam
Date: July 29, 2019 | Instructor: Aaron Johnston

Do not turn this page until 10:50 am.

Instructions
• This exam contains 14 pages (7 pieces of paper), including this cover page and the reference

pages. Show scratch work for partial credit, but put your final answers in the boxes and blanks
provided. If you cannot fit your work or solutions in the space provided, you may use the two
“extra space” pages at the end, but you must clearly mark that you have done so at the original
question and on the extra page.

• The last page is a reference sheet. Please detach it from the rest of the exam.
• The exam is closed book (no laptops, tablets, calculators, or telepathy). You are allowed one

page (US letter, double-sided) of handwritten or typed notes.
• Please silence and put away all cell phones and other mobile or noise-making devices. Remove

all hats, sunglasses, and headphones.
• You have 60 minutes to complete this exam.

Advice
• Read questions carefully before starting. Skip questions that are taking a long time.
• Read all questions first and start where you feel the most confident. Note the point breakdown

below – the questions are of varying difficulty and point value.
• Relax. You are here to learn. J

Point Breakdown

Question 1 2 3 4 5 6
Topic C Pointers

‘n’ Structs
Code

Organization
C

Preprocessor C++ Classes C File I/O Memory and
the OS

Total
Points 22 pts 18 pts 6 pts 26 pts 14 pts 14 pts

First Name: Sample

Last Name: Solutions

UW NetID: ssolutions@uw.edu

Signature:
All work is my own. I did not

have advance knowledge of
the exam and will not

distribute knowledge to
classmates who haven’t taken

it yet. Violating these terms
may result in a failing grade.

Sample Solutions

 2

Question 1: C Pointers ‘n’ Structs [22 pts]

In this problem, you will finish a partially-implemented climate control system written in C for Sieg
Hall (which might explain some things…). Use the following struct definitions for buildings with an
arbitrary number of classrooms. The room struct acts as a linked list node, each pointing to the next
room via the next member (the last node has next == NULL).

a) [6 pts] The following code snippet creates a building with 2 classrooms. Complete the code so the

building represents “Sieg Hall” (building code “SIG”) and contains (in order): classroom 224 with a
temperature of 70.0, and classroom 134 with a temperature of -100.0. For this problem, assume the
Verify333 function is sufficient for handling malloc failures.

Building sieg;
Room *r1 = (Room *) malloc(sizeof(Room)); Verify333(r1 != NULL);
Room *r2 = (Room *) malloc(sizeof(Room)); Verify333(r2 != NULL);
sieg.room_head = r1;

// code is a char array of fixed size 3 stored within the struct, so it
// does not need a null terminator (not a C-style “string”)
sieg.code[0] = ‘S’; sieg.code[1] = ‘I’; sieg.code[2] = ‘G’;

// long_name is a pointer to a C-style “string”, so it does have a null
// terminator (created automatically here by the string literal)
sieg.long_name = “Sieg Hall”;

r1->room_number = 224;
r1->temp = 70.0;
r1->next = r2;

r2->room_number = 134;
r2->temp = -100.0;
r2->next = NULL;

typedef struct room_st {
 int32_t room_number;
 float temp;
 struct room_st *next;
} Room;

typedef struct building_st {
 char code[3];
 char *long_name;
 Room *room_head;
} Building;

 3

b) [8 pts] Draw a memory diagram for sieg as described above. All character arrays should have
elements drawn out explicitly, and you should clearly indicate what segment of memory (stack,
heap, static data, etc.) everything resides in. Don’t forget to label variable/field names.

Note: Some solutions copied the chars of “Sieg Hall” into the heap. We
awarded full credit as long as it was labeled appropriately in part b.

sieg

code

long_name

room_head

 S I G

70.0

room_number

temp

next

224

-100.0

room_number

temp

next

134

S i e g H a l l \0

STACK

HEAP HEAP

STATIC DATA

 4

c) [8 pts] Now assume the code from part (a) has been placed in a function MakeSieg, and we want to
add code after it to return the value to the caller. Assume all code in the program treats buildings
and rooms as immutable once created, and that using Verify333 to check for a malloc failure is
sufficient. For each of the following options, simply circle OK if it works and does no unnecessary
operations. Otherwise, circle either BROKEN (if it doesn’t work) or UNNECESSARY (if it works but
does unnecessary operations) and then explain your answer in no more than 1 sentence.

Building *MakeSieg () {

 // code from (a)

 return &sieg;
}

OK BROKEN UNNECESSARY

 If not OK, explain:

The space for sieg resides in the
MakeSieg stack frame. If we return
a pointer to that space, we will
get unspecified behavior trying to
use it once the stack frame has
been deallocated.

Building MakeSieg() {

 // code from (a)

 return sieg;
}

OK BROKEN UNNECESSARY

 If not OK, explain:

Returning sieg itself will directly
copy the bytes of the Building.
Since that includes copying the
pointers to the corresponding heap
data, this will correctly give the
client everything they need to use
sieg.

Building *MakeSieg () {

 // code from (a)

 Building *s_copy = (Building *)
 malloc(sizeof(Building));
 Verify333(s_copy != NULL);
 s_copy = &sieg;
 return s_copy;
}

OK BROKEN UNNECESSARY

 If not OK, explain:

s_copy initially points to the
heap-allocated space, but we set it
to instead point to the sieg
variable in the MakeSieg stack
frame. This has the same problem as
the upper-left (and a memory leak!)

Building *MakeSieg () {

 // code from (a)

 Building *s_copy = (Building *)
 malloc(sizeof(Building));
 Verify333(s_copy != NULL);
 *s_copy = sieg;
 return s_copy;
}

OK BROKEN UNNECESSARY

 If not OK, explain:

Copies sieg to the heap and then
returns a pointer, which works but
is unnecessary heap usage. We also
gave full credit for circling “OK”
with well-reasoned justification,
such as possibly preventing making
more copies in the future.

 5

Question 2: Code Organization [18 pts]

The following code is the contents of a file called main.c (each part of the code has been placed in its
own box) for a reading log program that tracks the number of pages read each day. You would like to
refactor the code into 3 different modules: day.c/day.h for keeping track of a single day,
week.c/week.h for keeping track of a week, with main.c acting as a client of the other code.

a) [10 pts] In the box to the right of each part of the source code below, write the name of the file the

code should be placed in, following best practices for style and modularity. You should minimize
the number of dependencies that will be created for each file. Some solutions have already been
provided for you.

For simplicity, do not worry about memory leaks or malloc failures in this problem, and you do
not have to specify other file contents such as header guards or #include directives.

typedef struct day_st {
 int16_t pages_read;
} Day;

day.h

typedef struct week_st {
 void *days[7];
} Week;

week.h

Day *AllocateDay();

day.h

Week *AllocateWeek();

week.h

void ReadPages(Week *wk, int16_t day, int16_t pages);

week.h

static Day *GetDay(Week *wk, int16_t day);

week.c

int main(int argc, char **argv) {
 Week *wk = AllocateWeek();
 ReadPages(wk, 0, 25);
 return EXIT_SUCCESS;
}

main.c

Day *AllocateDay() {
 return (Day *) malloc(sizeof(Day));
}

day.c

Week *AllocateWeek() {
 Week *wk = (Week *) malloc(sizeof(Week));
 for (int i = 0; i < 7; i++) {
 wk->days[i] = malloc(sizeof(Day));
 }
 return wk;
}

week.c

void ReadPages(Week *wk, int16_t day, int16_t pages) {
 GetDay(wk, day)->pages_read = pages;
}

week.c

static Day *GetDay(Week *wk, int16_t day) {
 return (Day *) wk->days[day];
}

week.c

 6

This design minimizes dependencies because the public interface exposed by
the week module never uses the Day typedef, so clients of the week module
wouldn’t need to include day.h.

Note that the static helper function GetDay should be put in the same
location as the ReadPages function, the only place that uses it. We gave
full credit for placing ReadPages in main.c, although doing so introduces
a subtle extra dependency because it requires main.c to include day.h to
access the definition of Day in GetDay.

b) [8 pts] The following Makefile was used for the previous version of the code. Update it to be

appropriate for the new organization of the code. If you must delete or change the existing contents,
cross out the relevant portions and mark clearly what text should be inserted where.

CFLAGS = -Wall -std=c11 -g
OBJS = main.o week.o day.o

main: $(OBJS)
 gcc $(CFLAGS) -o main $(OBJS)

main.o: main.c week.h
 gcc $(CFLAGS) -c main.c

week.o: week.c week.h day.h
 gcc $(CFLAGS) -c week.c

day.o: day.c day.h
 gcc $(CFLAGS) -c day.c

Note: We gave full credit as appropriate for solutions that were correct
based on your answer to part (a).

 7

Question 3: C Preprocessor [6 pts]

Consider the following code in a file called spooky.c:

#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>

#define TRIPLE(x) x * 3
#ifdef DDEBUG
#define CONST 4
#else
#define CONST 2
#endif

int main(int argc, char **argv) {
 int32_t x = TRIPLE(2);
 int32_t y = TRIPLE(10 + CONST);
 printf(“%d, %d\n”, x, y);
 return EXIT_SUCCESS;
}

When compiled with gcc -Wall -std=c11 -DDEBUG -o spooky spooky.c, what does the
executable spooky output when run?

6, 16

Note that the flag -DDEBUG defines the symbol DEBUG, not the symbol
DDEBUG, so the second number should not be 22. Also recall that the
preprocessor does simple text substitution, but does not override order
of operations – so expanding TRIPLE to 10 + 2 * 3 would evaluate to 16,
not 36. Making both mistakes would lead to the second number being 42.

 8

Question 4: C++ Classes [26 pts]

Suppose we have a C++ class that simulates a very simple read-only “file” by storing an array of chars
and treating it as the “file” contents. For this problem, assume that all data we want to store in a File
can be stored using chars. Each File object stores the underlying data in a heap array (pointed to by
the field data_), and has a field cursor_ representing the offset of the next char to be read. Assume
the correct headers are included in all the code for this problem.

class File {
 public:
 File(const char data[], const int32_t len);
 File(const File& other);
 File &operator=(const File& other);
 ~File();

 private:
 int32_t cursor_;
 char *data_;
 int32_t data_len_;
};

a) [4 pts] Implement the two-argument constructor. You should make space on the heap and copy

from the data argument to the newly created space on the heap, setting data_len_ to reflect the
size of the heap data. Each File starts with its cursor_ indicating char 0. Part of your score will
be determined by the efficiency and style of your code.

File::File(const char data[], const int32_t len) : cursor_(0),
 data_len_(len) {
 data_ = new char[len];
 for (int i = 0; i < len; i++) {
 data_[i] = data[i];
 }
}

Since each File object stores the length of its data, it’s not necessary
to store the data as a true C-style “string” (i.e. with a null
terminator). However, we did not deduct if you chose a different
representation for the data as long as it was consistent.

 9

b) [8 pts] Suppose we add the following implementations of the copy constructor, assignment
operator, and destructor (which may not follow good style). Note that the copy constructor and
assignment operator make a shallow copy of the data_ field: they do not copy the array itself.

File::File(const File& other) {
 data_ = other.data_;
 data_len_ = other.data_len_;
 cursor_ = 0;
}

File &File::operator=(const File& other) {
 if (this != &other) {
 data_ = other.data_;
 data_len_ = other.data_len_;
 cursor_ = 0;
 }
 return *this;
}

File::~File() {}

After writing the code above, we would like to try adding code to clean up File’s heap memory.
The following are three potential ways we could change the File class to try and accomplish that.
For each, circle YES or NO to indicate whether or not it would have the correct result, and in no
more than 1 sentence, explain why or why not. Assume that no other changes are made beyond
what is described – in particular, that no other fields or functions are added to File.

Add code to the File destructor given above that deallocates the data_ field.
 YES NO

Since both the copy constructor and assignment operator make a shallow
copy of data_, it’s possible that two File objects will be referring to
the same underlying heap data, so it’s not safe to deallocate the data_
field because it might break another file object. Note that the question
specified no additional fields or functions, otherwise we could add
bookkeeping data to track how many Files refer to the same data.
Add code to the File assignment operator given above that deallocates the old heap memory
pointed to by data_ before shallow copying the new value of data_.
 YES NO

For the same reason as above: it’s not safe to deallocate data_ because
another File may be using the same underlying heap space.

Documenting in the function and class comments of File that a client using the class must take
responsibility for deallocating its heap memory.
 YES NO

data_ is a private member and the function specifies no additional
functions (e.g. getters) so this would not be possible.

 10

c) [6 pts] Write the declaration and corresponding comments of a member function (do NOT
implement it) called ReadChar as they would appear in the public section of the above class
declaration. The function should read the next char from the File and return it, advancing the
internal cursor_ by one. Choose appropriate parameters and returns for the function, keeping in
mind any error conditions. You may not use C++ exceptions in this problem.

/*
 * Uses the output parameter result to return the next char
 * from the File’s data, advancing the File’s cursor. Returns
 * 0 if successful, -1 if there are no more characters to return.
 */
int32_t ReadChar(char * const result);

Note: Since the File object stores arbitrary chars in data, there’s no
value of char we can safely use to indicate an error (for instance, there
could be null terminators in the data). Therefore, this function needed
to return more information in some way to signify an error condition.

 11

d) [8 pts] Consider the execution of the following code, and assume File has been included properly.
Write (in order) every member function that is invoked on any File object, along with the name of
the local variable it is invoked on. Include the output that is printed in the appropriate spot among
the list of member functions. You may abbreviate constructor as ctor, copy constructor as cctor,
assignment operator as op=, and destructor as dtor. Assume no compiler optimizations.

#include <cstdlib>
#include <iostream>

char arr1[] = {‘I’,‘<’,‘3’,‘C’};

void DoVeryLittle(File &in) {
 File c(in);
}

void DoQuiteLittle(File &in){
 File d(arr1, 4);
 d = in;
 in = d;
}

int main(int argc, char **argv) {
 File a(arr1, 4);
 File &b = a;
 std::cout << “very” << std::endl;
 DoVeryLittle(a);
 std::cout << “quite” << std::endl;
 DoQuiteLittle(b);
 return EXIT_SUCCESS;
}

Operations performed, in order (the first
is provided for you):

 ctor a

 very

 cctor c
 dtor c

 quite

 ctor d
 op= d
 op= in
 dtor d

 dtor a

Note: We gave full credit for
using another name aliased to
the same underlying variable,
such as using b instead of a.

 12

Question 5: C File I/O [14 pts]

a) [6 pts] Suppose you are using the C standard library to write 1024 total bytes to disk. To do so, you
invoke the fwrite() function repeatedly, writing N bytes each time until all 1024 bytes are written.

Give a value of N such that the code would be more efficient with buffering turned on than turned
off (assume a buffer size of 512 bytes). Briefly explain why.

Any value between 1 (inclusive) and 512 (exclusive).

If each fwrite call writes 1 byte of data, without buffering we would
need to make 1024 accesses to disk to write all of the data. With
buffering, 512 of those bytes would be saved up before writing it all to
disk at once, requiring only 2 accesses to disk. Since disk accesses take
a relatively enormous amount of time, any value of N less than 512 would
be improved with buffering turned on.

Give a value of N such that the code would be more efficient with buffering turned off than turned
on. Briefly explain why.

Any value between 512 (inclusive) and 1024 (inclusive).

If we write the data using a single fwrite call writing all 1024 bytes at
once, we only require one disk access. With buffering, things would be
slightly slower because we would write 512 bytes to disk at once,
incurring 2 disk accesses. Note that even for a value between 512 and
1024, for which it would be necessary to make 2 disk accesses anyway, it
would still be slightly slower to use buffering because it would require
copying the data to an intermediate buffer and then writing to disk (but
still use 2 disk accesses).

 13

b) [8 pts] Suppose you have a file on disk called midterm_soln.txt with a guaranteed size of
exactly 50 bytes. The following is a partially-implemented POSIX read loop that reads in those 50
bytes from the file and copies them into a buffer called buf. Complete the code so that after the last
line, buf contains those 50 bytes. Make sure to clean up the open file descriptor.

#include <fctnl.h>
#include <unistd.h>
#define BUFFER_SIZE 50

char buf[BUFFER_SIZE];
int bytes_left = BUFFER_SIZE;
int fd = open(“midterm_soln.txt”, O_RDONLY);

while (1) {
 ssize_t res = read(fd, ___ buf + (BUFFER_SIZE – bytes_left) ___,
 ___ bytes_left ___);
 if (res == 0) {
 break;
 } else if (res == -1) {
 if (errno != ___ EINTR ___) {
 perror("read error");
 exit(1);
 }
 } else {

 ___ bytes_left -= res ___;
 }
}
___ close(fd) ___; // Clean up the fd

 14

Question 6: Memory and the OS [14 pts]

a) [10 pts] Consider the following code:

#include <stdlib.h>
#include <stdio.h>

int v;
int main(int argc, char **argv) {
 holler(1);
 return EXIT_SUCCESS;
}

void holler(int w) {
 char *x = “yeehaw %d\n”;
 printf(x, w);
 int *y = (int *) malloc(sizeof(int));
 int z = 10;
}

For each variable, mark two “X”s in the following tables to indicate when space for it is allocated
and deallocated. For the pointers x and y, you should answer based on when the memory they
point to is allocated and deallocated. When you are done, each column should contain 2 “X”s.

VARIABLE: v w *x *y z

ALLOCATED: During the compilation process
When the program starts running X X
At the beginning of holler() X 0.5 X
After the printf in holler() X 0.5

DEALLOCATED: When the compiler finishes running
At the end of main() X X X
At the end of holler() X 0.5 X
When the computer is powered off 0.5

There were several common misconceptions. We gave partial credit for the
cells marked 0.5 in the above table, explained below:

x points to a string literal, the data for which is populated in the read-
only static data region. Read-only static data doesn’t change size during
the course of the program, so it has to be allocated when the program
first starts running. Similarly, the static data only gets deallocated
when the entire program stops running (when main finishes), not when the
variable that points to it gets deallocated (the end of holler).

z points to a local variable in the holler stack frame. Although the value
10 is inserted after the printf, the entire stack frame is allocated when
a function gets called, including space for z.

 15

y points to data on the heap. Although we never explicitly free that data,
it is still part of the program’s virtual address space, all of which gets
torn down when the program finishes. In this case, the program finishes
when main returns. Remember that this is why memory leaks are “benign” in
a short-lived program – because the OS reclaims everything when the
program finishes anyway. In class, we used the example of leaving dirty
dishes in the sink when the whole apartment building is about to burn
down.

 16

b) [4 pts] Rather than have all code on the computer run in the same context, there is a divide
between the operating system and user code. To invoke functionality implemented in the operating
system, user code uses a “system call”. Compared to having everything in user code, briefly describe
two advantages to dividing the OS/user code in this way, and one disadvantage.

There were many possible answers. Some of the most common:

Advantage:

Security and/or Privacy

(OS enforces isolation between processes, users, devices, etc. Some also
mentioned that the difference is defined in hardware, which gives even
more protection that would not necessarily be possible in just user code
without hardware support)
Advantage:

Abstraction

(User doesn’t need to understand anything about the underlying hardware,
can use the convenient abstraction of virtual memory, doesn’t have to
understand the internal workings of system calls, etc.)

Disadvantage:

A couple common answers:

Efficiency and/or Cost of Context Switching

(It takes a lot of work to switch the entire context for execution to be
running in kernel mode, such as saving/restoring register values,
arranging arguments according to the OS interface, switching hardware
modes, etc.)

Reference and/or Documentation

(This isn’t a major disadvantage because most OS documentation is quite
good, but it could be considered a disadvantage because the user has to
rely on the quality of the documentation and doesn’t necessarily have
access to the source code or the ability to easily switch it out for a
better version).

