

University of Washington – Computer Science & Engineering
Spring 2019 Instructor: Justin Hsia 2019-05-10

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Samantha Student
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE333 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 5:00.
Instructions

• This exam contains 10 pages, including this cover page. Show scratch work for partial
credit, but put your final answers in the boxes and blanks provided.

• The last page is a reference sheet. Please detach it from the rest of the exam.
• The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed one page (US letter, double-sided) of handwritten notes.
• Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.
• You have 70 minutes to complete this exam.

Advice

• Read questions carefully before starting. Skip questions that are taking a long time.
• Read all questions first and start where you feel the most confident.
• Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 19 15 25 31 13 103

2

Question 1: You MAKE Me Whole [19 pts]

Let CFLAGS = -Wall -g -std=c11. The symbol “$^” means all sources.

(A) Complete the corresponding directed acyclic graph for the Makefile. [5 pt]

may: april.o flowers.o
 gcc $(CFLAGS) -o may $^

april.o: april.c showers.h
 gcc $(CFLAGS) –c april.c

flowers.o: flowers.c showers.h sun.h
 gcc $(CFLAGS) -c flowers.c

soil.o: soil.c sun.h showers.h
 gcc $(CFLAGS) -c soil.c

garden: flowers.o soil.o
 gcc $(CFLAGS) –o garden $^

clean:
 rm -f *.o garden

(B) Starting with only the source files (.c and .h) and Makefile, we run “make” followed by
“make clean”. What happens to the following files? Use “C” for created, “CD” for
created and then deleted, and “U” for untouched (i.e. unchanged or not created). [4 pt]
may _C_ april.o _CD_ soil.o _U_ garden _U_

make runs the first target in the Makefile (may), which doesn’t reach soil.o or garden.
make clean removes all object files and garden (never built), but not may.

(C) Write out a new all target that builds all the non-phony targets with the shortest source
list possible. [2 pt]

all: may garden

(D) Where should we put the all target in Makefile? [2 pt]

At the top/beginning of the Makefile.

(E) [0] Assume all works properly. [1] We run “make all”. [2] We modify sun.h.
[3] What happens to the following files when we run “make all” again? Use “M” for
modified and “U” for untouched. [4 pt]
may _M_ april.o _U_ flowers.c _U_ garden _M_

Follow the DAG from sun.h to see that may and garden are affected, but april.o is
not. None of the source files (flowers.c) are affected by the commands in this Makefile.

(F) The given Makefile above has a subtle mistake (besides no all). Describe the fix. [2 pt]

Need to include the executable may in the rm command under the phony target clean.

april.c flowers.c soil.c

showers.h sun.h

april.o flowers.o soil.o

garden may

SID: __1234567__

3

Question 2: Love Your Food (PRE)PROCESSOR [15 pts]

Suppose we have the following files:

food.h: #ifdef SWITCH
#define FOOD(a) ((a>0)-0.5)*2*y;
#else
#define FOOD(a) a
#endif
typedef int num;

food.c: #include <stdio.h>
#include "food.h"
#define x 3.5
int y = -7.5;
int main(int argc, char **argv) {
 printf("%d\n", (int) FOOD(x));
 return 0;
}

(A) The header file is missing a header guard! Following the style guide for this class, what
name should we use for the guard macro? [2 pt]

FOOD_H_

(B) If we compile with gcc food.c, what is output when we run a.out? [4 pt]

SWITCH is not defined, so it prints the value of (int) 3.5 3

(C) Complete the result of cpp -P -DSWITCH food.c below. Ignore the output of the
#include <stdio.h> directive. [6 pt]

typedef int num;
int y = -7.5;

int main(int argc, char **argv) {

 printf("%d\n", (int) ((3.5>0)-0.5)*2*y;);
 return 0;
}

(D) (Circle one) What will be happen when we try to compile gcc -DSWITCH food.c and
run a.out? [3 pt]

compiler
error

output
-7

output
0

output
7

output
7.5

Notice the extra semicolon! Even without that, the (int) cast would round
((3.5>0)-0.5) = 0.5 down to 0, resulting in 0*2*-7 = 0 being printed.

4

Question 3: SHELTER Me From The C And The Storm [25 pts]

We’re writing software in C to help a local animal shelter track their current (i.e. unadopted)
and former (i.e. adopted) residents. We will use the following typedef-ed structs:

(A) Draw a memory diagram for a small Shelter Hsiadoption that has two residents: an
unadopted cat with serial number "3DJc" and an adopted dog with serial number "xj1".
The manager’s name is "Justin". Internal character arrays should have
individual elements drawn out explicitly, but pointed-to c-strings can be
written as string literals. Don’t forget to include variable/field names. [8 pt]

J u s t i n \0

typedef struct an {

 char *serial; // unique ID (variable length) [Heap]

 uint8_t adopted; // 0 – unadopted, 1 - adopted

} Animal;

typedef struct sh {

 Animal **residents; // pointer to array of Animal pointers [Heap]

 uint32_t num_res; // length of residents array

 char manager[7]; // manager’s name

} Shelter;

Hsiadoption residents

num_res

manager

2

adopted

serial

0

"3DJc" "xj1"

adopted

serial

1

SID: __1234567__

5

(B) An implementation of CloseShelter() is below, which is supposed to clean up all of
the Heap memory managed by a Shelter instance. Describe three errors below. [5 pt]

Memory Errors: memory leak of s.residents
 memory leak of s.residents[i]
 invalid free of s.residents[i]->adopted (not malloc-ed)
Style Error: the Shelter should be passed as a pointer to avoid struct copying
 a variety of other style issues were given partial and full credit

(C) Below, complete the helper function GenSerial() that generates a new, random serial
string of random length. Assume we have the following functions available to you: [9 pt]

int32_t randLen(); // returns a random int in the range of 1-10
char randChar(); // returns a random printable character

// Returns a random serial # and its length. Returns -1 on error.
int32_t GenSerial(char **serial) {

 // generate random serial length
 int32_t len = randLen();

 // allocate space for c-string (including null terminator)
 *serial = (char *) malloc((len+1)*sizeof(char));

 // error checking for failed allocation
 if (*serial == NULL)
 return -1;

 // assign random characters
 for (int32_t i = 0; i < len; i++)
 (*serial)[i] = randChar();

 // add null terminator to end c-string
 (*serial)[len] = '\0';

 return len;
}

(D) Given a pointer Animal *a = (Animal *) malloc(sizeof(Animal)), set its fields
to an unadopted animal and give it a serial using GenSerial(): [3 pt]

__GenSerial(&a->serial)___________________;

__a->adopted = 0__________________________;

In real code, we should have error checked the return value of GenSerial (for -1), but
this was overlooked for the purposes of this exam (only 2 lines given).

void CloseShelter(Shelter s) {
 for (int32_t i = 0; i < s.num_res; i++) {
 free(s.residents[i]->serial);
 free(s.residents[i]->adopted);
 }
}

6

Question 4: Class DICTation [31 pts]

Abbrev: constructor (ctor), copy constructor (cctor), assignment (op=), destructor (dtor).
All code written for this question will be graded on style.

(A) Given KVPair p1 and Dict d1, will the following work? Answer “Y” or “N”. [4 pt]

KVPair p2; Y (def ctor) Dict d2 = d1; Y (cctor)

p1 = KVPair(); Y (synth op=) d1 = Dict(0,nullptr); N (2-arg ctor)

(B) (Circle one) Which field is initialized first during the construction of a Dict object? [2 pt]

key entries_ size_ value

Data members are constructed/initialized in the order they are defined.

(C) Write out an inline definition of an accessor get_size() for Dict. [3 pt]

size_t get_size() const { return size_; }

(D) Briefly argue whether or not we should define an accessor for entries_ in Dict. [2 pt]

No. Returning a copy of entries_ will allow outside access to modify the contents of
*entries_.

struct KVPair {

 KVPair() = default;

 KVPair(string k, string v);

 KVPair(const KVPair &p) = delete;

 string key, value;

}; // struct KVPair

class Dict {

 public:

 Dict() : entries_(nullptr), size_(0) { }

 Dict(const Dict &d); // DEEP copies data members

 Dict &operator=(const Dict &rhs);

 ... // other methods that you will implement

 private:

 size_t size_; // # of entries in dictionary

 KVPair *entries_; // array of size_ entries [Heap]

}; // class Dict

SID: __1234567__

7

(E) entries_ points to an array on the Heap. Define a Dict member method Push() for
the implementation file (.cc) that adds a given KVPair to the end of entries_. [8 pt]

void Dict::Push(const KVPair &p) {
 KVPair *old = entries_;
 entries_ = new KVPair[size_ + 1]; // def ctor
 for (int i = 0; i < size_; i++)
 entries_[i] = old[i]; // op=
 entries_[size_] = p; // op=
 size_++; // increase size by one
 delete[] old; // clean up old memory
} // many valid solutions exist

(F) The inline definition of the Dict destructor is given below: [3 pt]

 ~Dict() { delete[] entries_; }

(Circle one) Which destructor first completes during the destruction of a Dict object?

key entries_ size_ value

During the deletion of entries_, each KVPair in the array gets destructed. Data
members are destructed in the reverse order of definition.

(G) (Circle one) What type of function should the following be? [2 pt]

Dict operator+(const Dict &a, const Dict &b) {
 Dict out;
 out.entries_ = new KVPair[a.size_ + b.size_];
 for (int i = 0; i < a.size_; i++)
 out.entries_[i] = a.entries_[i];
 for (int j = 0; j < b.size_; j++)
 out.entries_[j + a.size_] = b.entries_[j];
 return out;
}

non-friend +
member

friend +
member

non-friend +
non-member

friend +
non-member

The function prototype takes 2 parameters, so it must be non-member. But it directly
accesses private members, so it has to be a friend function.

(H) Assume that the Dict cctor (definition not shown) does a deep copy of data members.
If d1 and d2 are both Dicts of size 1, how many times are each of the following invoked
(count both Dict and KVPair methods) during d1 + d2? [7 pt]

ctor __5__ cctor __1__ op= __4__ dtor __3__

ctor: out (1, Dict), new (2, KVPair), return (2, KVPair during cctor of Dict).
op=: for-loop assignments (2, KVPair), return (2, KVPair during cctor of Dict).
cctor: return (1, Dict). dtor: return (1, Dict and 2, KVPair during Dict dtor).

8

Question 5: The INs and OUTs [13 pts]

(A) Briefly explain why the C standard library file I/O functions are considered more
portable than the POSIX library file I/O functions. [2 pt]

The C standard library is specified as part of the C programming language, and is
therefore found in every implementation of C on any system. The POSIX library is
defined for just Unix-like variants. On systems without POSIX, the C standard library
file I/O functions will invoke the appropriate other library functions (e.g. Windows
API) instead.

(B) Convert the following two lines of C code into their POSIX library equivalents. Do NOT
add any other lines (e.g. error checking): [5 pt]

C Std
Lib:

FILE *file = fopen("midterm.txt", "w");
size_t n = fwrite(buf, sizeof(long), 10, file);

POSIX: _int fd = open("midterm.txt", O_WRONLY)____________________;

_ssize_t n = write(fd, buf, 10*sizeof(long))_______________;

(C) When we find an unrecoverable error in the following function calls, do we need to close
the associated file descriptor during our error handling? Answer “Y” for yes and “N” for
no. [3 pt]

open _N_ read _Y_ write _Y_ close _N_

On open, nothing to close! On close, likely won’t work on repeated attempts.

(D) For the following I/O function return types, what is the common indicator of an error?
[3 pt]

FILE * ___NULL____

size_t _____0_____

ssize_t ____-1_____

