

University of Washington – Computer Science & Engineering

Spring 2019 Instructor: Justin Hsia 2019-06-12

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE333 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 12:30.
Instructions

 This exam contains 14 pages, including this cover page. Show scratch work for partial

credit, but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed two pages (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 110 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question 1 2 3 4 5 6 Total

Possible Points 15 18 24 18 20 22 117

2

Question 1: Potpourri – Nice to Smell, Hard to Spell [15 pts]

(A) Will the following lines of C++ code compile? Briefly explain. [3 pt]

int &* a1; Y / N
A reference is an alias, not a physical location, so you can’t
point to a reference.

int *& a2; Y / N
This is a reference to a pointer, which makes sense and is legal,
but a reference must be initialized.

(B) Circle the outcome of the following lines of code with const int* cip. [3 pt]

const int** b1 = &cip; Compiles / Invalid syntax / Violates constness

int* const * b2 = &cip; Compiles / Invalid syntax / Violates constness

int** const b3 = &cip; Compiles / Invalid syntax / Violates constness

b1 is a pointer to a pointer to a const int. b2 is a pointer to a const pointer to an int.

b3 is a constant pointer to a pointer to an int.

(C) The following C casts compile and run without errors. Which type of cast is the most

appropriate equivalent in C++ code? [3 pt]
const int i = (int) 4.2; ___static_cast____

int* iptr = (int*) &i; ____const_cast____

float* fptr = (float*) iptr; _reinterpret_cast_

The 1st does the standard conversion from float to int.

The 2nd strips away the const-ness from &i, which is const int*.

The 3rd is reinterpreting the address as a different kind of pointer.

(D) Briefly describe what slicing is and why it is a problem with STL containers. [4 pts]

Slicing: Slicing is when you assign a derived object to a base object and you can’t
copy the data outside of the subobject corresponding to the base class.

Containers: STL containers copy-by-value, so adding or assigning a derived object
into a container that holds the base class causes slicing.

(E) Briefly explain whether the Ethernet payload or IP payload takes up a larger percentage

of the overall packet sent over the network. [2 pt]

(circle one)

Ethernet / IP

Explain: The IP payload (network layer) is contained within the
Ethernet payload (data link layer), so it takes up a smaller percentage
of the overall packet.

SID: __1234567__

3

Question 2: A NETWORKING Event For You [18 pts]

(A) What does a return value of 0 mean for the following network programming functions?

[6 pt]

getaddrinfo(): Success

socket(): Valid file descriptor, but stdin must have been closed earlier.

bind(): Success

read(): Connection closed for networking (EOF for file I/O).

(B) Layers upon layers of structs! Fill in the blanks using the word bank below: [6 pt]

addrinfo AF_INET AF_INET6 in_addr

in6_addr in_port_t sa_family_t ss_family_t

sockaddr sockaddr_in sockaddr_in6 sockaddr_storage

An IPv6 address (just the address) is stored in a struct ____in6_addr____.

The above IPv6 address, plus other info, is stored inside a struct __sockaddr_in6__.

The above struct fits inside a more general struct sockaddr_storage.

(C) We are writing single-threaded server-side networking code that doesn’t use file I/O.

Using comments/pseudocode, describe what we should do in order if we detect an

unrecoverable error during write() based on the suggested style used in this course.

You should write out something for each line of code you would expect to write, but it

does not need to be properly formatted (e.g. just a description is fine). [6 pt]

Two “families” of responses were given full credit: (1) the error is such that we want to
exit the process and (2) the error is deemed localized to the client and we want to
continue accepting other connections.

// Family 1:
// write a useful error message to stderr/cerr
// close the active connection socket (from accept())
// close the listening socket (from socket())
// exit or return from main with EXIT_FAILURE

// Family 2:
// (optional) error message – usually not if not terminating
// close the active connection socket (from accept())
// break out of writing loop
// reuse listening socket to do next accept()

4

Question 3: Let’s Give Your PHONE Signal a Boost [24 pts]

Before smart phones, mobile phones used a predictive text system called

T9, based on the mapping of a single numpad key to any of the

corresponding letters shown in the image to the right. Note that the ‘1’,

‘*’, and ‘#’ keys won’t be used and that ‘0’ corresponds to [Space].

Example: a user would type ‘8’, then ‘4’, then ‘3’ to get the word “the”,

though it could also predict longer words like “they” or “there”.

We will use C++ STL to generate our T9 predictive dictionary! The top of our file is shown

below so that you are aware of what is globally available:

#include <iostream>
#include <string>
#include <vector>
#include <map>

using namespace std;

First, we will convert everything in a predefined index (e.g. imported from a file) of predictable

words into the corresponding key presses (e.g. "the"→"843", "hello"→"43556").

(A) We will use a global map from lowercase letters to keys and a function to initialize this

map. Complete just the requested portion below of that function: [4 pt]

map<char, char> letters_to_keys;

void InitLettersMap() {

 letters_to_keys['a'] = '2'______; // key mapping for 'a'

 ... // assume all other key mappings happen here

 letters_to_keys['z'] = '9'______; // key mapping for 'z'
}

(B) Complete the function below to convert a string to lowercase in place (note the parameter

type). Hint: use the char tolower(char) function. [3 pt]

void StrToLower(string * const input) {
 for (char& c : *input) { // option 1: range for (ref is necessary)
 c = tolower(c);
 }
 // option 2: with iterators
 // for (auto it = (*input).begin(); it < (*input).end(); it++) {
 // *it = tolower(*it);
 // }
}

SID: __1234567__

5

We want the strings to be predictable from any of the prefixes (i.e. substring starting at the

beginning) of their keyed versions. Example: "the" is predictable from "8", "84", and "843".

(C) Complete the function to add a mapping from each prefix to the lowercase string. You

may find the string member function string substr(size_t pos, size_t len);

useful, which returns the substring of length len starting from position pos. [10 pt]

map<string, vector<string>> predictions; // global prediction map

void AddPrefixesToPredictions(string * const word) {
 // Note: string word also works, just makes an extra copy of the
 // string object. You would also need to remove one level of
 // indirection below (e.g. word --> &word, *word --> word).

 // lowercase the word
 StrToLower(word);

 // convert string to prefixes
 string prefix;
 for (auto c : *word) {
 prefix += letters_to_keys[c];
 predictions[prefix].push_back(*word); // soln 1: immediately
 // push *word onto prefix
 // key
 }

 // soln 2: extra loop to push *word to onto all prefix keys
 // for (size_t i = 1; i <= prefix.length(); i++) {
 // predictions[prefix.substr(0,i)].push_back(word);
 // }
}

(D) Complete the function below to print out the contents of predictions. For example, if

we’ve added "a" and "ax", it should print out the following (note the formatting): [7 pt]
 2 : a, ax,
 29 : ax,

void PrintPredictions() {
 // loop over every prediction pair
 for (auto& pred_pair : predictions) {
 cout << pred_pair.first << " : ";
 // loop over every vector entry
 for (auto& w : pred_pair.second) {
 cout << w << ", ";
 }
 cout << endl;
 }
}

6

Question 4: Get SMART With Your POINTERS [18 pts]

We are building a template for a two-level array, which is an array of pointers to row arrays.

This is how Java implements 2D arrays! We will use smart pointers in order to help with the

memory cleanup. Below is an attempt at a definition of our class, where h is the “height/rows”

and w is the “width/columns” of our two-level array:

#include <iostream>
#include <memory>

using namespace std;

template <typename T, int h, int w> struct TwoLevelArray {
 public:
 TwoLevelArray(); // def ctor
 TwoLevelArray& operator=(const TwoLevelArray& rhs); // op=
 T* operator[](size_t idx); // op[]

 private:
 unique_ptr<T[]> level_one_[h]; // array of unique_ptrs to arrays
};

(A) Complete the definition of the default constructor below. Note: you are not allowed to try

to add an initialization list. [3 pt]

template <typename T, int h, int w>
TwoLevelArray<T, h, w>::TwoLevelArray() {
 for (int i = 0; i < h; i++) {
 // option 1: use reset on default constructed unique_ptr's
 level_one_[i].reset(new T[w]);

 // option 2: use move ctor (not expected to know this)
 // and also changes your answer to part E
 // level_one_[i] = unique_ptr<T[]>(new T[w]);
 }
}

(B) The struct above uses the synthesized copy constructor. Will this work? Briefly explain

your response. [3 pt]

(Circle one) Works? Yes No

Explain: The synthesized cctor copies all of the elements of the array data member,

which would invoke the deleted cctor of unique_ptr.

SID: __1234567__

7

(C) Complete the definition of the assignment operator below using good style. [6 pt]

template <typename T, int h, int w>
TwoLevelArray<T, h, w>&
 TwoLevelArray<T, h, w>::operator=(const TwoLevelArray &rhs) {

 if (this != &rhs) {
 for (int i = 0; i < h; i++) {
 for (int j = 0; j < w; j++) {
 level_one_[i][j] = rhs.level_one_[i][j];
 }
 }
 }

 return *this;

}

(D) Complete the definition of the subscript operator so that it will return the address of the

requested row. Hint: pay attention to the return type. [2 pt]

template <typename T, int h, int w>
T* TwoLevelArray<T, h, w>::operator[](size_t idx) {

 return level_one_[idx].get();

}

(E) What happens when we try to execute the following main function (circle one)? If there

is an issue, give a brief explanation. If it works fine, how many unique pointers are

constructed? [4 pt]

int main() {
 TwoLevelArray<int, 2, 3> ar;
 cout << "ar[0] = " << ar[0] << endl;
 ar[0][1] = 333;
 TwoLevelArray<int, 2, 3> ar_copy;
 ar_copy = ar;
 return EXIT_SUCCESS;
}

Compiler
Error

Double
Delete

Memory
Leak

Segmentation
Fault

Works
Fine

Explanation/#: If you used reset() in part A, then there are 4 unique pointers
constructed, 2 in ar and 2 in ar_copy. If you used a move ctor in part A, then there
are 8 unique pointers constructed, 4 per TwoLevelArray ctor.

[Other answers accepted based on answers to part A and C]

8

Question 5: You Are Entitled To Your INHERITANCE [20 pts]

Consider the following C++ classes. The code below causes no compiler errors.

#include <iostream>
using namespace std;

class A {
 public:
 void f1() { f2(); cout << "A::f1, "; }
 virtual void f2() { cout << "A::f2, "; }

 private:
 int m_ = 333;
};

class B : public A {
 public:
 void f1() { cout << "B::f1, "; }
 virtual void f3() { cout << "B::f3, "; }

 private:
 int n_ = 451;
};

class C : public B {
 public:
 virtual void f1() { cout << "C::f1, "; }
 void f2() { f3(); cout << "C::f2, "; }
};

(A) Draw a conceptual diagram of a default-constructed object of class C below. Don’t

show vptr’s. [2 pt]

Orientation and sizing doesn’t matter

 Class C object

 Class B subobject

 Class A subobject

(B) List out in order all functions (synthesized or defined) that are called during the execution

of the code below. Make sure to use the full Class::Function names. [3 pt]

A* ap = new B;

delete ap;

B::B() // def ctor called by new

A::A() // def ctor called on A subobject

A::~A() // dtor is statically dispatched (ap)

451 n_

333 m_

SID: __1234567__

9

(C) Complete the virtual function table diagram below by adding the remaining class

methods on the right and then drawing the appropriate function pointers from the vtables.

Ordering of the function pointers matters! One is already included for you. [7 pt]

(D) Assume we have objects and pointers as defined in the five lines of code below. Then, for

each row of the table below, fill in the result on the right, which should either be the

corresponding stdout output, “compiler error,” or “runtime error.” [8 pt]

 B b; // object instances
 C c;
 A *ap1 = &c; // pointers
 B *bp1 = &b;
 B *bp2 = &c;

bp1->f1(); B::f1, (static)

bp1->f2(); A::f2, (dynamic inherited)

bp2->f2(); B::f3, C::f2, (dynamic f2, dynamic inherited f3)

bp2->f3(); B::f3, (dynamic inherited)

ap1->f1();
B::f3, C::f2, A::f1,

(static f1, dynamic f2, dynamic f3)

ap1->f3(); compiler error (A has no f3)

f2

f3

f2

f3

A vtable

B vtable

C vtable

f2

f3

f1

FUNCTION CODE

A::f2

A::f1

B::f1

B::f3

C::f2

C::f1

10

Question 6: Staying A-THREAD Of The Game [22 pts]

We are going to write a multithreaded C program that will count all of the instances of a

specified integer in an integer array. The top of the file is given below:

 #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define NUM_THREADS 4
#define AR_SIZE 100
#define COUNT_ME 2
static int global_count = 0, ignore;
static pthread_mutex_t count_lock;

typedef struct {
 int *ar_ptr; // array pointer
 int elements; // number of consecutive elements to check
} thd_arg;

(A) Complete the function below that the children threads will run. Assume that the passed

values are found on the Heap. [8 pt]

1
2

3

4
5
6
7

8

9

10

11

12

// Adds the # of occurrences of COUNT_ME in a portion
// of the array to global_count and cleans up.
// Assumes count_lock is initialized already.
void *ThreadMain(void *arg) {

 thd_arg *a = (thd_arg *) arg;
 int local_count = 0;

 for (int i = 0; i < a->elements; i++) {

 if (a->ar_ptr[i] == COUNT_ME) {
 local_count++;
 }
 }

 pthread_mutex_lock(&count_lock);

 global_count += local_count;

 pthread_mutex_unlock(&count_lock);

 free(a);

 return NULL;
}

SID: __1234567__

11

(B) How would you expect this multithreaded code to perform compared to a sequential

version of the code in the following scenarios? Briefly explain your choices. [4 pt]

Single CPU: Faster About the Same Slower

Multiple CPUs: Faster About the Same Slower

Explanation: Single CPU is executing the counting sequentially (might even have
worse spatial locality), but with additional thread overhead (creation, switching).

Multiple CPUs can run local sums in parallel and won’t fight too much over the critical
section, which is accessed just once per thread.

It turns out that we can avoid using a mutex altogether if we make use of the

return value from ThreadMain!

(C) What changes need to be made to the following lines in ThreadMain? (other minor

changes are needed but are not part of this question) [4 pt]

Line 2: _int *_ local_count = (int *) calloc(1, sizeof(int));

Line 12: return (void *) local_count;

We need to return the address of an int, so that int can’t be on the Stack. So we

convert local_sum to a pointer to a heap-allocated int and return its address.

(D) Complete the portion of main below that will sum up the local counts of each thread.

Here, we allow you to skip error checking by storing into the ignore variable. [6 pt]

pthread_t thds[NUM_THREADS]; // array of thread ids

int * retval; // declare a needed variable

... // threads created here

// Wait for all child threads to finish and add their counts
// to global_count.
for (int i = 0; i < NUM_THREADS; i++) {

 ignore = pthread_join(thds[i], (void **)&retval);

 global_count += *retval;

 free(retval);
}

retval is an output parameter to get the value returned from ThreadMain, so it needs

to be an int * to match and we pass the address of it (casted to void **). Because it

was dynamically-allocated in ThreadMain, we must free it afterwards.

