

University of Washington – Computer Science & Engineering
CSE 333 Autumn 2019 Midterm: Version B

Last Name:

First Name:

Student ID Number:

Name of person to your Left | Right

All work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in

CSE333 who haven’t taken it yet. Violation of these terms
could result in a failing grade. (please sign)

Do not turn the page until 11:30.
Instructions

• This exam contains 8 pages, including this cover page. Show scratch work for partial credit, but put
your final answers in the boxes and blanks provided.

• The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed one
page (US letter, double-sided) of handwritten notes.

• Please silence and put away all cell phones and other mobile or noise-making devices.
• You have 50 minutes to complete this exam.

Advice
• Read questions carefully before starting. Skip questions that are taking a long time.
• Read all questions first and start where you feel the most confident.
• Relax. You are here to learn.

Question 1 2 3 4 5 6 7 8 Total

Possible Points 13 8 12 6 28 19 25 1 112

Version B UWNetID: ____________________

2

Question 1:

Consider the dependency graph, below, which was derived from our project’s Makefile.

(A) [4 pts] If DocTable.h is modified, which targets need to be rebuilt?

(B) [4 pts] If DocTable.c is modified, which targets need to be rebuilt?

(C) [4 pts] In HW2, MemIndex.c contained a line to #include “DocTable.h”. The Makefile
snippet which generated our dependency graph is below. What, if anything, needs to change in it?

◻️ Changes Are Required to Makefile (see below) ◻️ No Changes Necessary

MemIndex.o: MemIndex.c MemIndex.h HashTable.h

 $(CC) $(CFLAGS) -c $<

(D) [3 pts] If changes are necessary to the Makefile, please describe how these changes would impact your
answers to (A) and (B).

◻️ Changes Are Required to (A) and (B) (described below) ◻️ No Changes Necessary

searchshell

searchshell.o

searchshell.c

DocTable.o

DocTable.c DocTable.h

MemIndex.o

MemIndex.h MemIndex.c

HashTable.o

HashTable.c HashTable.h

Version B UWNetID: ____________________

3

Question 2:

[8 pts] Of the following, which are POSIX system calls and which are not?
 Syscall Not Syscall

struct dirent* readdir(DIR *dirp);

int open(const char *pathname, int flags);

void exit(int status);

size_t fread(void *ptr, size_t size,

 size_t count, FILE *stream);

Question 3:

[12 pts] Recall that the steps of building and running a program are: preprocessing, compilation, linking, and
loading. At which step do each of the following events occur?

Templates are instantiated (eg, vector<int>) for a specific type

Space is reserved for global variables which reside in static data

Global variables which reside in static data are initialized to their values

The contents of header files (eg, stdio.h) are copied into source (eg, .c)

References to declared-but-not-defined symbols (eg, function declarations
and extern’ed variables) are resolved

Source files (eg, main.cc) are checked for syntax errors

Question 4:

UW student numbers (not UWNetIDs) are 7-digit numbers that uniquely identify every currently- and
formerly-enrolled student. Unfortunately, the first two digits represent a year, which means the format will
need to change in approximately 50 years. UW has decided that the new format for student numbers will be
a randomly-generated bit pattern.

If this format needs to last for the next 200 years and there are ~30,000 students per year, what type should
you choose to represent these student numbers?

Hint: 216 == 65,536; 232 == 4,294,967,296; 264 == 18,446,744,073,709,551,616

(A) [3 pts] ◻️ Signed integer ◻️ Unsigned integer

(B) [3 pts] ◻️ 16-bit integer ◻️ 32-bit integer ◻️64-bit integer

Version B UWNetID: ____________________

4

Question 5:

This holiday-themed C program has 3 files. Remember that % is the modulo or “remainder” operator.

trickortreat.h trickortreat.c

#ifndef TRICKORTREAT_H_

#define TRICKORTREAT_H_

#define EATEN_CANDY 0

#define CHOCOLATE_BAR 1

#define CANDY_CORN 2

#define LOLLIPOP 3

int Dispense();

#endif // TRICKORTREAT_H_

#include "trickortreat.h”

#define NUM_CANDY_TYPES 3

#define TO_CANDY(c) ((c) + 1)

static int kids = 0;

int Dispense() {

 int candy =

 TO_CANDY(kids % NUM_CANDY_TYPES);

 kids++;

 return candy;

}

main.c

#include "trickortreat.h"

#define NUM_PIECES 4

#define NUM_EATEN 3

void EatCandy(int a[]) {

 for (int i = 0; i < NUM_EATEN; i++) {

 a[i] = EATEN_CANDY;

 }

}

int main(int argc, char *argv[]) {

 int *collectedCandy = (int*)malloc(NUM_PIECES * sizeof(int));

 int kids = 10;

 for (int i = 0; i < NUM_PIECES; i++) {

 collectedCandy[i] = Dispense();

 }

 EatCandy(collectedCandy);

 // *** HERE ***

 free(collectedCandy);

 return 0;

}

(A) [8 pts] Below, write the contents of trickortreat.c after it has been pre-processed.

Version B UWNetID: ____________________

5

(B) [20 pts] Draw a memory diagram showing the state of the program at “*** HERE ***”. For your
convenience, our two .c files are reprinted below.

Stack

Heap

Static Data

(reprinted code below)

main.c trickortreat.c

#include "trickortreat.h"

#define NUM_PIECES 4

#define NUM_EATEN 3

void EatCandy(int a[]) {

 for (int i = 0; i < NUM_EATEN; i++) {

 a[i] = EATEN_CANDY;

 }

}

int main(int argc, char *argv[]) {

 int *collectedCandy = (int*)malloc(

 NUM_PIECES * sizeof(int));

 int kids = 10;

 for (int i = 0; i < NUM_PIECES; i++) {

 collectedCandy[i] = Dispense();

 }

 EatCandy(collectedCandy);

 // *** HERE ***

 free(collectedCandy);

 return 0;

}

#include "trickortreat.h”

#define NUM_CANDY_TYPES 3

#define TO_CANDY(c) ((c) + 1)

static int kids = 0;

int Dispense() {

 int candy =

 TO_CANDY(kids % NUM_CANDY_TYPES);

 kids++;

 return candy;

}

Version B UWNetID: ____________________

6

Question 6:

Consider the following C++ program:
void embiggen(int a[], int size) {

 for (int i = 0; i < size; ++i) {

 a[i] += 1;

 }

}

int main(int argc, const char *argv[]) {

 int arr[] = {0, 10, 20, 30};

 int i = arr[0];

 i += 3;

 int &r = arr[1];

 r += 2;

 int *p = &(arr[2]);

 p += 1;

 embiggen(arr, 4);

 // *** HERE ***

 return 0;

}

[19 pts] When this program reaches “*** HERE ***”, what do each of these expressions evaluate to?
i

r

*p

arr { , , , }

&i == &(arr[0]) True False

&r == &(arr[1])

&r == &(arr[3])

p == &(arr[2]) True False

p == &(arr[3]) True False

Version B UWNetID: ____________________

7

Question 7:

Our templated “Smart Vector” class stores pointers to dynamically-allocated objects and releases their
memory when it goes out of scope. Furthermore, it implements “deep copy” semantics by copying the
pointees rather than the pointers (ie, copying raw memory addresses) whenever a SmartVector is copied.

SmartVector.h SmartVector.cc

#ifndef SMARTVECTOR_H_

#define SMARTVECTOR_H_

extern const int kMaxSize;

template <typename T> class SmartVector {

 public:

 SmartVector() : currentSize_(0) { }

 SmartVector(const SmartVector &other) {

 // Implement me in Part (A)!

 }

 ~SmartVector() {

 for (int i = 0; i < currentSize_; ++i) {

 delete contents_[i];

 }

 }

 void Append(T *elt) {

 Verify333(currentSize_ < kMaxSize);

 contents_[currentSize_] = elt;

 currentSize_++;

 }

 T* Get(int idx) const {

 Verify333(idx >= 0 && idx < currentSize_);

 return contents_[idx];

 }

 private:

 T* contents_[kMaxSize];

 int currentSize_;

};

#endif // SMARTVECTOR_H_

#include “SmartVector.h”

const int kMaxSize = 64;

 (A) [10 pts] Implement SmartVector’s copy constructor.
SmartVector(const SmartVector &other) {

}

(B) [4 pts] SmartVector currently works on any T. Based on your new copy constructor, what
restrictions now apply to T’s functionality? If there are changes, describe them below.

◻️ There Are New Restrictions (described below) ◻️ No New Restrictions

Version B UWNetID: ____________________

8

(C) [8 pts] Considering all we know about classes and deep copies, what is SmartVector missing and why
does it matter?

(D) [3 pts] Using 3 lines or fewer, write code that demonstrates the missing functionality discussed in (C).
We’ve given you some starter code.

#include “SmartVector.h”

int main(int argc, const char *argv[]) {

 SmartVector<int> v1;

 v1.Append(new int(351));

 v1.Append(new int(333));

 return 0;

}

Question 8:

[1 pt; all non-empty answers receive this point] Select one member of the course staff. Describe or draw an
emoji representing that person.

