

University of Washington – Computer Science & Engineering
CSE 333 Autumn 2019 Final Exam: Solution

Last Name: Programmer

First Name: Systems

Student ID Number:

Name of person to your Left | Right

All work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in

CSE333 who haven’t taken it yet. Violation of these terms
could result in a failing grade. (please sign)

Systems Programmer

Do not turn the page until 2:30.
Instructions

• This exam contains 12 pages, including this cover page and a blank sheet at the end. Show scratch work
for partial credit, but put your final answers in the boxes and blanks provided.

• Write your student ID number at the top of every page. This helps us reassemble your exam when the
pages are inevitably separated.

• The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed two
pages (US letter, double-sided) of handwritten notes.

• Please silence and put away all cell phones and other mobile or noise-making devices.
• You have 110 minutes to complete this exam.

Advice
• Read questions carefully before starting. Skip questions that are taking a long time.
• Read all questions first and start where you feel the most confident.
• Breathe. You’ve got this. You belong here.

Question 1 2 3 4 5 6 7 8 9 Total

Possible Points 12 16 14 23 3 6 15 10 1 100

 Student ID Number: _______________________

2

Question 1:

[12 pts] Recall that the read() syscall has the following signature:

 ssize_t read(int fd, void *buf, size_t count);

and furthermore may set the global variable errno to values such as EINTR (the read was interrupted) or
EBADF (the passed-in file descriptor was bad).

You are trying to read the entire contents of a file by invoking read() in a loop. Draw the flow chart for your
loop.

Question 2:
[16 pts] Below, we list several items. Check the box if it has space reserved within a process’s virtual memory;
if it does exist and a process may have more than one instance of it in its memory, also check the second box.

 Exists More than One

🦄 Unicorns 🦄 😢 I wish!

Program counter / Instruction pointer x x

Recursion

Heap x

Stack x x

Stack pointer x x

Static data segments (eg, .data, .text) x

Current value of general-purpose registers (eg, eax, ebx, ecx) x x

read()

Returns <0 Returns 0 Returns >0

errno == EINTR errno != EINTR

Error; exit loop Success; exit loop

 Student ID Number: _______________________

3

Question 3:

We’ve created a SmartMutex class that locks an (externally-instantiated) pthread_mutex_t and unlocks
it when the instance goes out of scope. A client might write the following example code to use our class;
assume all relevant headers have been #include’d.

char *g_buffer; // protected by g_lock

pthread_mutex_t g_lock; // protects g_buffer

void InitializeBuffer(int64_t length, char init) {

 SmartMutex m(&g_lock); // implicitly locks g_lock

 if (g_buffer != nullptr || length <= 0) { return; }

 g_buffer = new char[length]; // ‘new’ may throw an exception

 for (int i = 0; i < length; ++i) {

 g_buffer[i] = init;

 }

}

(A) [4 pts] Why might this SmartMutex class be useful?

Even though it’s quite simple, the example code still has 3 exit points. As it grows in
complexity, the likelihood of forgetting to unlock g_lock will also grow. Using
RAII to manage the lock will ensure it’s unlocked regardless of how we exit the
function.

(B) [6 pts] Based on our example code above, define and implement the SmartMutex class.

class SmartMutex {

 public:

 SmartMutex(pthread_mutex_t *m) : m_(m) {

 pthread_mutex_lock(m_);

 }

 ~SmartMutex() { pthread_mutex_unlock(m_); }

 private:

 pthread_mutex_t *m_;
};

(C) [1 pt] Our client noticed they didn’t unlock g_lock when they exited InitializeBuffer() and has
asked us to add an explicit Unlock() method to SmartMutex. Is this method necessary in their example
code?

◻️ Yes, necessary x No, unnecessary

(D) [3 pts] If this method is necessary, enumerate all the places where the client needs to call Unlock() in
their sample code. If this method is not necessary, please explain your reasoning.

They do not need to manually unlock g_lock because it is automatically unlocked
when the Mutex m stack variable goes out of scope.

 Student ID Number: _______________________

4

Question 4:

Examine the following classes. Assume all relevant #include and using statements have been made.

class Window {

 public:

 virtual void DrawString(const string &s) { /* ... */ }

 virtual void Add(Widget *w) {

 // Take ownership of the argument, then set their owner pointer to us.

 ownedWidgets_.push_back(shared_ptr<Widget>(w));

 w->SetOwner(this);

 }

 private:

 vector<shared_ptr<Widget>> ownedWidgets_;

};

class Widget {

 public:

 virtual void Draw(Window *w) { /* nothing to do */ }

 void SetOwner(Window *w) { owner_.reset(w); }

 virtual ~Widget() { }

 private:

 shared_ptr<Window> owner_;

};

class Box : public Widget {

 public:

 Box(int w, int h) : w_(w), h_(h) { }

 virtual void Draw(Window *w) { /* nothing to do; boxes are invisible */ }

 int Area() { return w_ * h_; }

 protected:

 int w_, h_;

};

class TextBox : public Box {

public:

 TextBox(const string &msg, int w, int h) : Box(w, h), msg_(msg) { }

 virtual void Draw(Window *w) { w->DrawString(msg_); }

 private:

 string msg_;

};

class MultilineTextBox : public Box {

public:

 MultilineTextBox(const vector<string> &msgs, int w, int h)

 : Box(w, h), msgs_(msgs) { }

 virtual void Draw(Window *w) {

 for (const auto &m : msgs_) { w->DrawString(m); }

 }

 int Area() { return w_ * h_ * msgs_.size(); }

 private:

 vector<string> msgs_;

};

 Student ID Number: _______________________

5

(A) [5 pts] Draw a diagram of the inheritance relationship between these classes (ie, the “inheritance
hierarchy”). You do not need to add the methods; just the class names.

(B) [6 pts] Suppose we define the following variables:

Box *b = new Box(1, 1);

TextBox *t = new TextBox("hello winter break", 10, 20);

MultilineTextBox *m = new MultilineTextBox({"bye", "autumn", "quarter"}, 20, 20);

Widget *w_b = b;

Widget *w_t = t;

Box *b_m = m;

Window *win; // used for Draw() calls, below. You can assume it’s initialized

Which class’s method is invoked by each of the following calls? If the call would not compile, please write
“Compiler Error” instead.

Method Call Invoked Method’s Class

t->Draw(win) TextBox

w_b->Draw(win); Box

w_t->Draw(win); TextBox

(*t).Draw(win); TextBox

(*w_b)->Area(); Compiler Error; Widget does not have an Area()method

b_m->Area(); Box

m->Area(); MultilineTextBox

Widget

Box

TextBox MultilineTextBox

Window

 Student ID Number: _______________________

6

(C) [6 pts] Using the same variables from part (B), fill in the blank with the C++-style cast that would cause the
statement to compile. If the statement compiles without a cast, check the “Unnecessary” box. Recall that you
may choose from static_cast<>, dynamic_cast<>, const_cast<>, and reinterpret_cast<>.

 Unnecessary

w_b = (b); x

b = dynamic_cast<Box*> (w_b);

double x = 3.14159;

int pi = static_cast<int> (x);

t = reinterpret_cast<TextBox*> (1234);

const Window *cp = (win); x

const Window cw;

win = const_cast<Window *> (&cw);

 Student ID Number: _______________________

7

Note: the final exam, as given, had a typo which made the question harder than intended. I’ve preserved
the exam version as “D.i” because of its educational value. The question, as intended, is presented as
“D.ii”.

(D.i) [6 pts] Does this code snippet have any memory allocation errors?

Box *b = new Box(1, 1);

TextBox *t = new TextBox(10, 20);

MultilineTextBox *m = new MultilineTextBox(20, 20);

Window win; // takes ownership of widgets added to it

win.Add(b);

win.Add(t);

win.Add(m);

◻️ No errors (justification below) x Memory leak (fix described below) x Double delete (fix described below)

Because the Window is stack-allocated, it is destroyed at the end of this snippet. This
drops the Widgets’ refcount to 0, so they are also destroyed. However, when their
destructors are called, the refcount for Window also drops to 0 so it is destroyed a
second time. To fix this, we should allocate Window on the heap, which triggers the
memory leak described in D.ii

(D.ii) [6 pts] Does this code snippet have any memory allocation errors?

Box *b = new Box(1, 1);

TextBox *t = new TextBox(10, 20);

MultilineTextBox *m = new MultilineTextBox(20, 20);

shared_ptr<Window> win(new Window); // takes ownership of widgets added to it

win->Add(b);

win->Add(t);

win->Add(m);

◻️ No errors (justification below) x Memory leak (fix described below) ◻️ Double delete (fix described below)

There is a shared_ptr cycle between Window and the various Widgets. As
discussed in lecture, we can break this cycle by changing the type of Widget’s
owner_ pointer to weak_ptr (we also accepted a raw pointer as a valid response).

 Student ID Number: _______________________

8

Question 5:

[3 pts] Let’s map the latency of common computer operations to the human-scale operations required for
studying for the 333 final. You may use the following:

A. Reading a sticky note on your monitor (0.5 secs)
B. Finding the right page/paragraph in the textbook kept next to your monitor (2 mins)
C. Asking on Piazza (36 mins)
D. Texting another 333 student for the answer (1 hour)
E. Requesting a scanned article from UW Libraries (2 days)
F. Buying the physical textbook without Amazon Prime (1 week)
G. Re-taking CSE 351 and then re-taking CSE 333 (20 weeks)
H. Buying the physical textbook currently on Jupiter (6 years)
I. Buying the physical textbook currently in the Alpha Centauri system (78,000 years)

Computer Operation Human Analogue
L1 cache reference A
Main memory reference B

Packet round trip within same datacenter F

Disk seek G
Packet round trip across a submarine cable H

Question 6:

Consider the following code. Assume all relevant #include statements have been made.

struct Coordinate {

 int x, y;

};

void Modify(Coordinate &c) {

 c.y = c.y + 10;

}

int main(int argc, char *argv[]) {

 Coordinate arr[] = { {0, 10}, {1, 11}, {2, 12}, {3, 13} };

 Coordinate *p = &arr[0];

 Coordinate c0 = *p;

 c0.x = 10;

 Modify(c0);

 Modify(*p);

 Coordinate &c1 = arr[0];

 Modify(c1);

 Coordinate *c2 = arr + 3;

 Modify(*c2);

 // ** HERE **

 return EXIT_SUCCESS;

}

 Student ID Number: _______________________

9

[6 pts] Draw a memory diagram showing the state of the program when we exit (ie, at “*** HERE ***”).

Stack

 c1

 arr

 p

 c0

 c2

Heap

{0, 30} {1, 11} {2, 12} {3, 23}

{10, 20}

 Student ID Number: _______________________

10

Question 7:

(A) [7 pts] Recall that the 7 steps of server-side network programming are:
1. Get local IP address and port
2. Create socket
3. Bind socket to local IP address and port
4. Listen on socket
5. Accept connection from client
6. Read and write data on that connection
7. Close socket

The HttpServer::Run() method from HW4 implements the “server read/write loop”; a simplified version
of it is below. Note that SocketServer’s methods have been renamed to make this question harder (sorry!).

In the right column, write the step number alongside the line in which it occurs. Note that every step occurs in a
helper function, so a single line may have multiple step numbers .

void HttpServer::Run() {

 SocketServer ss;

 int listen_fd;

 if (!ss.Method1(AF_INET6, &listen_fd)) {

 return;

 }

 ThreadPool tp(kNumThreads);

 while (1) { // read/write loop

 HttpServerTask *hst = new HttpServerTask(

 &HttpServer_ThrFn);

 InitializeHST(hst);

 ss.Method2(&hst->client_fd,

 &hst->caddr,

 &hst->cport,

 &hst->cdns,

 &hst->saddr,

 &hst->sdns);

 tp.Dispatch(hst); // Dispatch() invokes the

 // function whose pointer was

 // passed to hst’s constructor

 }

}

1, 2, 3, 4

5

6

7

void HttpServer_ThrFn(HttpServerTask *hst) {

 HttpConnection conn(hst->client_fd);

 while (1) {

 HttpRequest req = conn.GetNextRequest();

 HttpResponse resp = ProcessRequest(req,

 hst->basedir, hst->indices);

 conn.WriteResponse(resp);

 if (req.GetHeaderValue("connection") == "close") {

 break;

 }

 }

}

For reference only.
Do not mark in this box.

 Student ID Number: _______________________

11

(B) [4 pts] Oftentimes, when maintaining a server you want to answer questions such as “how many requests
has it served?” or “what percentage of those requests are HTTP2?”. A common solution for these questions
involve adding global statistics to your server. You reimplement HttpServer_ThrFn()as follows:

int g_request_count = 0;

int g_http2_request_count = 0;

void HttpServer_ThrFn(HttpServerTask *hst) {

 HttpConnection conn(hst->client_fd);

 while (1) {

 HttpRequest req = conn.GetNextRequest();

 g_request_count++;

 if (req.isHttp2()) {

 g_http2_request_count++;

 }

 HttpResponse resp = ProcessRequest(req,

 hst->basedir, hst->indices);

 conn.WriteResponse(resp);

 if (req.GetHeaderValue("connection") == "close") {

 break;

 }

 }

}

Does this code demonstrate a data race?

◻️ No race (reason below) x Yes, there is a race (fix described below)

HttpServer_ThrFn is called by multiple threads concurrently. Therefore, we need
to ensure access to our two global variables is synchronized. It is simplest to lock both
of them with the same lock (though we accepted answers with two independent locks).

(C) [2 pts] Assume your server’s threadpool has 3 threads and it has processed 100 HTTP requests.

• If you answered “no race” in part (B), what is the value of g_request_count as viewed from the

“main thread”?
• If you answered “yes, there is a race”, what set of values might g_request_count have, as viewed

from the “main thread”? Assume the bug has not been fixed yet.

[1, 100]

 Student ID Number: _______________________

12

(D) [2 pts] HW4 used threads to implement concurrency. If, instead, we had run HttpServer_ThrFn()in
forked processes (using the double-fork trick), what would be the value or set of values for
g_request_count as viewed from the “main process”? Justify your answer.

0. g_request_count is incremented by the forked process, which has its own
virtual memory and therefore its own copy of g_request_count. The main
process would never see the incremented value.

Question 8:

(A) [2 pts] Recall that each layer in the OSI network model (eg, physical, data link, network) has its own packet
format, consisting of a packet header and a packet body. How is each layer’s packet represented in the next
layer down? For example, how is an IP packet (data link) represented as an ethernet packet (physical)?

Each packet’s header and body is stored in the body of the layer below.

(B) [8 pts] Are each of the following statements true or false?

DNS is a network-level protocol True / False

SSH is an application-level protocol True / False

TCP is a client/server protocol (one server to one client) True / False

If a TCP packet needs to be split across multiple IP packets, it will add a
sequence number to each IP packet to detect their intended ordering and
to detect if any IP packets were lost

True / False

If a host detects that an IP packet was lost, it will re-request the entire
TCP packet.

True / False

UDP is a client/server protocol (one server to one client) True / False

UDP is a good transport protocol for HTTP True / False

HTTP headers can contain arbitrary key/value pairs True / False

Question 9:

[1 pt; all non-empty answers receive this point] Draw or describe a friend for your unicorn, below.

Thanks for a great quarter! Have a wonderful winter break and
come say “hi” in the new year!

😃 🦄

