

University of Washington – Computer Science & Engineering
Spring 2018 Instructor: Justin Hsia 2018-05-04

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE333 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 5:00.
Instructions

• This exam contains 12 pages, including this cover page. Show scratch work for partial
credit, but put your final answers in the boxes and blanks provided.

• The last page is a reference sheet. Please detach it from the rest of the exam.
• The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed one page (US letter, double-sided) of handwritten notes.
• Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.
• You have 70 minutes to complete this exam.

Advice

• Read questions carefully before starting. Skip questions that are taking a long time.
• Read all questions first and start where you feel the most confident.
• Relax. You are here to learn.

Question 1 2 3 4 5 6 Total

Possible Points 12 9 24 12 15 18 90

2

Question 1: You MAKE Me Whole [12 pts]

For the following questions, you may use the variable CFLAGS = -Wall -g -std=c11.

(A) We have a file oneA.c that includes oneA.h. Write a Makefile target to produce the
executable oneA. [3 pt]
oneA: oneA.c oneA.h
 gcc –Wall –g –std=c11 –o oneA oneA.c
 OR
 gcc $(CFLAGS) –o oneA oneA.c

Recall that targets can execute multiple commands. The touch command updates the
timestamp on a file to the current time (and creates the file if it did not previously exist).

(B) Draw out a corresponding directed acyclic graph for the Makefile on the left. [4 pt]

cse: cse.o engr.o
 gcc $(CFLAGS) -o cse *.o

cse.o: cse.c engr.h uw.h
 touch engr.o
 gcc $(CFLAGS) -c cse.c

engr.o: engr.c engr.h
 gcc $(CFLAGS) -c engr.c

uw.o: uw.c uw.h
 gcc $(CFLAGS) -c uw.c

clean:
 rm -f *.o *~ cse

Note: direction of arrows didn’t matter as long as
consistent.

(C) A likely dependency error should be apparent from part B. Describe the fix. [2 pt]
Add uw.o to the source list in the cse target.

(D) Even with the dependency fix from part C applied, running make clean then make
results in a linking error! Briefly describe why this happens. [3 pt]

make clean removes all object files. In addressing the target cse, we first run the
commands in the cse.o target, which creates an empty, but “updated” engr.o file.
Therefore, we don’t run the engr.o target commands and there is an error when
linking to the empty engr.o file.

engr.o

engr.c

engr.h

uw.o

uw.c

uw.h

cse.c

cse

cse.o

SID: _____________

3

Question 2: Trust the (PRE)PROCESS(OR) [9 pts]

Note: the math.h functions are relevant to this problem. Suppose we have the following files:

justin.h: #ifndef SWITCH
#define ceil floor
#else
#define pow(x,y) 3*x
#endif

justin.c: #include <stdio.h>
#include <math.h>
#include "justin.h"
int main(int argc, char **argv) {
 printf("%d\n", (int) pow(ceil(1.5),2));
 return 0;
}

(A) The header file is missing a header guard! Following the style guide for this class, what
name should we use for the guard macro? [1 pt]

JUSTIN_H_

(B) If we compile with gcc justin.c, what is output when we run a.out? [3 pt]

Prints the value of (int) pow(floor(1.5),2) = 1^2 = 1. 1

(C) Show the result produced when we run justin.c through the C preprocessor with the
-DSWITCH option enabled. Ignore the output of the #include <stdio.h> and
#include<math.h> directives. [3 pt]

int main(int argc, char **argv) {

 printf("%d\n", (int) 3*ceil(1.5));
 return 0;

}

(D) (Circle one) What will be output when we run a.out after compiling with
gcc -DSWITCH justin.c? [2 pt]

1 3 4 6 other

The int cast applies first to the 3, which is then multiplied by 2.0 because ceil()
returns a float/double. Interpreting a floating point number as an int (%d specifier)
will cause printf() to print a weird number.

4

Question 3: It’s Fight or FLIGHT [24 pts]

We’re rewriting airport software to help the good folks at Sea-Tac keep track of flights. We will
use the following typedef-ed structs:

Each airport node holds a pointer to an array of Flights on the Heap and the length of that
array is stored in num_f. Pointers name and dest should also point to the Heap.
Assume we have the code shown below:

typedef struct t {

 size_t hr; // 0-23

 size_t min; // 0-59

} Time;

typedef struct f {

 char *dest; // destination airport

 Time dep; // departure time

 Time arr; // arrival time

} Flight;

typedef struct a {

 char *name;

 Flight *flights; // address of array of flights

 size_t num_f; // number of flights in array

 struct a *next;

} Airport; // node in linked list of airports

// Creates a new Airport (name: copied from argument, flights: NULL,

// num_f: 0, next: NULL) on the Heap and then pushes it to the front

// of our linked list of airports.

Airport *MakeAirport(char *name);

// Takes the provided Flight data and stores it in the flights array
// of the specified airport. Needs to update flights and num_f.

void AddFlight(Airport *a, char *dest, Time dep, Time arr);

Airport *head = NULL;

int main(int argc, char **argv) {

 Time t1 = {10,40}, t2 = {12,42};

 head = MakeAirport("SEA");

 AddFlight(head, "SFO", t1, t2);

 head = MakeAirport("SFO");

 return EXIT_SUCCESS;

}

SID: _____________

5

(A) Draw a memory diagram for our linked list of airports before main() returns: [9 pt]

S F O \0 S E A \0 S F O \0

(B) Complete the implementation of AddFlight(). Assume stdio.h, stdlib.h, and
string.h are included. Assume arguments are valid, but check for other errors. [15 pt]

void AddFlight(Airport *a, char *dest, Time dep, Time arr) {
 // make more space for larger array
 // realloc works like malloc if a->flights == NULL
 a->flights = (Flight*) realloc(a->flights,
 (a->num_f+1)*sizeof(Flight));
 // check for realloc error
 if (a->flights == NULL) {
 perror("flight malloc/realloc failed");
 exit(EXIT_FAILURE);
 }

 // malloc space for destination name
 a->flights[a->num_f].dest = (char*) malloc((strlen(dest)+1)
 * sizeof(char));
 // check for malloc error
 if (a->flights[a->num_f].dest == NULL) {
 perror("dest malloc failed");
 exit(EXIT_FAILURE);
 }

 // copy data into appropriate fields
 strcpy(a->flights[a->num_f].dest,dest);
 a->flights[a->num_f].dep = dep;
 a->flights[a->num_f].arr = arr;

 // update number of flights
 a->num_f++;

}

42

12

40
10

min
hr

hr
min

dep

arr

 flights flights

name name

num_f num_f

next next

head

1 0

 dest

6

Question 4: FILE This One Away [12 pts]

(A) Name one major difference between the C standard library file I/O functions and the
POSIX library file I/O functions. [2 pt]

• Buffered vs. non-buffered
• FILE* vs. file descriptors (int)
• Less error handling in POSIX
• etc.

(B) Complete the program below that will write each command-line argument (not including
the executable name) to a separate line at the end of the specified file. You shouldn’t need
to write more than ~15 lines. Hint: POSIX discouraged. [10 pt]

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(int argc, char **argv) {

 char *filename = "file.txt";

 FILE *file = fopen(filename, "a"); // or "ab"

 if (file == NULL) {

 perror("fopen error");

 return EXIT_FAILURE; // or exit(EXIT_FAILURE)

 }

 for (int i = 1; i < argc; i++) {

 fprintf(file, "%s\n", argv[i]);

 if (ferror(file)) {

 perror("fprintf error");

 fclose(file); // optional, but good to have

 return EXIT_FAILURE; // or exit(EXIT_FAILURE)

 }

 }

 fclose(file);

 return EXIT_SUCCESS; // be consistent!

}

SID: _____________

7

Question 5: Class Is Now In Session STUDENTS [15 pts]

(A) Complete the definition of the 3-argument constructor below using an initializer list: [3 pt]

Student(size_t id, string name, size_t years)
 : sid_(id), name_(name), age_(years) { }

(B) Given Student instances Alice and Bob, will the following work? Answer Y/N. [2 pt]

Student Carol; N (def ctor) Student Dan(Bob); Y (cctor)
Student Eve = Alice; Y (cctor) Alice = Bob; N (op=)

(C) If we add Student() { } as a public member, what are the following values in a
default constructed Student instance? Be precise, if possible! [2 pt]

sid_ garbage/unknown name_ std::string("")

(D) Write out an inline definition of an accessor function for name_ using good style. [3 pt]

std::string get_name() const { return name_; } OR
const std::string &get_name() const { return name_; }

(E) We want to add an operator (which one?) to compare two Student's by their unique ID
numbers. Write out the declaration and definition using good style! [5 pt]

Decl: friend bool operator<(const Student &lhs, const Student &rhs);

 OR
bool operator<(const Student &rhs) const;

Defn: bool operator<(const Student &lhs, const Student &rhs) {
 return lhs.sid_ < rhs.sid_;
}
 OR
bool Student::operator<(const Student &rhs) const {
 return sid_ < rhs.sid_;
}

using namespace std;

class Student {

 public:

 Student(size_t id, string name, size_t years);

 void birthday() { age_++; }

 Student &operator=(const Student &rhs) = delete;

 private:

 size_t sid_; // student ID number

 string name_;

 size_t age_;

}; // class Student

8

Question 6: An EXAM Within An Exam [18 pts]

Abbrev: constructor (ctor), copy constructor (cctor), assignment (op=), destructor (dtor).

Below is a modified version of class MultChoice from section, now renamed MC for brevity:

Answer the following questions based on the class definition above and the code below:

(A) Could the following variables be passed as an argument to Score? Answer Y/N. [2 pt]

MC *a __Y__ MC * const b __Y__
const MC *c __Y__ const MC * const d __Y__

The pointer address is copied into parameter, so all are allowed (assuming variables were
assigned to properly).

(B) When the program is executed, how many times are each of the following invoked? [6 pt]

ctor __6__ cctor __2__ op= __2__ dtor __8__

 dtor = ctor + cctor (nothing is dynamically allocated, so no memory leaks).

class MC {
 public:
 MC() : resp_(' ') { }
 MC(char resp) : resp_(resp) { }
 char get_resp() const { return resp_; }
 bool Compare(MC mc) const; // do the fields match?

 private:
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MC

#define QS 2
MC key[QS] = {'D', 'A'}; // this works – ctor (x2)

size_t Score(const MC *ans) {
 size_t score = 0;
 for(int i = 0; i < QS; i++) { // in loop (x2), non-ref param
 if(ans->Compare(key[i])) score++; // to Compare invokes cctor
 ans++;
 }
 return score;
}

int main(int argc, char **argv) {
 MC myAns[QS]; // default ctor (x2)
 myAns[0] = MC('B'); // ctor, then op=
 myAns[1] = MC('A'); // ctor, then op=
 std::cout << "Score: " << Score(myAns) << std::endl;
 return 0;
}

SID: _____________

9

Using class MC would get tedious quickly. We want to write a wrapper class called Exam
that stores an array of MC instances on the heap. We turn it into a class template:

(C) The destructor should clean up as necessary. Complete its definition below: [1 pt]

template <int QS> Exam<QS>::~Exam() {

 delete[] mcs_;

}

(D) The default constructor should set name to an empty string and mcs_ to the address of an
appropriately-sized array. Write out its definition: [3 pt]

template <int QS> Exam<QS>::Exam() : name("") {

 mcs_ = new MC[QS];

}

(E) Write out the definition of the member function Score. [4 pt]

template <int QS>
size_t Exam<QS>::Score(Exam<QS> &key) const {
 size_t score = 0;
 for (int i = 0; i < QS; i++) {
 if (mcs_[i].Compare(key.mcs_[i])) { // op== not defined
 score++;
 }
 }
}

(F) A cheater got a copy of the answer key using the Exam synthesized default copy
constructor! What happens to our answer key at the end of the program? [2 pt]

Double delete. The cctor does a shallow copy of the pointer mcs_, so two different
Exam objects point to the same array on the Heap. When they are destructed, we
delete the same address twice.

template <int QS> class Exam {
 public:
 Exam();
 Exam(std::string name, MC *mcs);
 ~Exam();
 MC get_question(size_t num) const;
 void change_resp(size_t num, char resp);
 size_t Score(Exam<QS> &key) const; // score exam against key
 std::string name; // name of the exam

 private:
 MC *mcs_; // array of MCs on heap
}; // class Exam

