

University of Washington – Computer Science & Engineering

Spring 2018 Instructor: Justin Hsia 2018-06-05

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE333 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 12:30.
Instructions

 This exam contains 14 pages, including this cover page. Show scratch work for partial

credit, but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed two pages (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 110 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question 1 2 3 4 5 6 Total

Possible Points 24 16 16 19 24 16 115

2

Question 1: Potpourri – Nice to Smell, Hard to Spell [24 pts]

(A) Name two benefits to utilizing const correctness in C++. [4 pt]

It makes sure that you don’t change what you intend not to.

It allows us to catch logical errors at compile time instead of run time.

(B) Are the following statements about C++ templates true or false? Answer T/F. [4 pt]

A template parameter must be a data type.
Can be a non-type like int. __F__

Using a template function instead of function overloading doesn’t
decrease the amount of machine code in your program.

Every time you call a template with a different parameter, the compiler
expands the code to be included in your program. __T__

Modularizing your code (creating header files and object code for
distribution) is the same with and without templates.

We need the template implementation to be visible/present for code
expansion. __F__

The template keyword does not need to be on the same line as the
function or class name. __T__

(C) If class D is derived from class B and we have object instances B b_obj and D

d_obj, will the following C++ casts cause errors (either compile-time or run-time)?

Answer Y/N. [4 pt]

static_cast <D *> (&b_obj) __N__

dynamic_cast <D *> (&b_obj) __N__

dynamic_cast <B *> (&d_obj) __N__

reinterpret_cast <B *> (&d_obj) __N__

The second line fails at runtime, but instead of crashing your program, it just returns

nullptr.

SID: __________

3

(D) The Internet [4 pts]

How many times more IPv6 addresses are there compared to IPv4? Answer as a multiple.

232 IPv4 addresses (4 bytes) and 2128 IPv6 addresses (16 bytes). 296

Circle one per row:

How many IP addresses can a host be associated with? One Multiple

How many hosts can be associated with an IP address? One Multiple

How many results can a DNS lookup return? One Multiple

How many MAC addresses can a NIC have? One Multiple

(E) For the following HTTP headers, circle if they are used in requests or responses and

briefly explain why that header is important. [4 pt]

Content-Type Used in: Request Response

Importance: So the browser knows how it should handle/display the response payload
(e.g. displaying an HTML file, PDF, image).

User-Agent Used in: Request Response

Importance: So the server can deliver content differently based on the browser being
used (e.g. mobile vs. desktop versions of a webpage).

(F) Complete the table below to compare forking processes and dispatching/spawning threads

with pthread. [4 pt]

 Threads Processes

Function to create pthread_create fork

Function for parent to get
child’s “return value”

pthread_join wait or waitpid

Where does the child
start code execution?

*start_routine
or

start_routine(arg)
the return from fork

4

Question 2: C++ Standard Template Library [16 pts]

We are investigating a social site like Facebook, where connections are bidirectional (e.g. a

friendship between Justin and Hal means that Justin is Hal’s friend and Hal is Justin’s friend).

(A) Given a user and their friend list (a vector of strings), we want to return all associated

friendship links as pairs, where the pair (p1, p2) represents that p1 is p2’s friend.

Implement the function friendPairs() below. Hint: auto will save you writing. [7 pt]

#include <string>
#include <vector>
using namespace std;

vector<pair<string,string>> *friendPairs (string user,
 vector<string> friends) {
 auto friendships = new vector<pair<string,string>>;
 for (const string &f : friends) {
 friendships->push_back(pair<string,string>(user,f));
 friendships->push_back(pair<string,string>(f,user));
 }
 // for (auto it = friends.cbegin(); it != friends.cend(); it++) {
 // friendships->push_back(pair<string,string>(user,*it));
 // friendships->push_back(pair<string,string>(*it,user));
 // }
 return friendships;
}

(B) We want to print our function results to stdout using the for_each() algorithm,

which takes an iterator range and function pointer. Create a function to print out pairs in

the format “(p1, p2)” and then fill in the call to for_each() [7 pt]

// define your function here
void PrintPair(const pair<string,string> &p) {
 cout << "(" << p.first << ", " << p.second << ")" << endl;
}

int main() {
 vector<string> friends({"Adam", "Hal", "Ruth"}); // this works

 // yes, this leaks memory, but I couldn’t squeeze in the delete
 auto result = friendPairs(string("Justin"), friends);

 _for_each(result->cbegin(), result->cend(), &PrintPair)_; // print

 return 0;
}

(C) Duplicate friendships eventually show up in our data. Name a container we could move

our data into that will automatically remove duplicates for us. [2 pt]

map or set

SID: __________

5

Question 3: Network Programming [16 pts]

(A) Complete the following inequalities for the relative “heights” (higher is “larger”) of the

following network layers: [2 pt]

Application __>__ Physical Network __<__ Transport

(B) Briefly define the following: [2 pt]

Host byte order:
The endianness of the host machine.

Network byte order:
The defined endianness for networking (big endian).

(C) Name two server-side programming functions that return file descriptors. [2 pt]

socket() accept()

(D) Briefly explain the effects of socket() and bind() on the OS descriptor table. [4 pt]

socket():
Allocate/create a new file descriptor entry.

bind():
Update the descriptor table entry (address info – IP, port, etc.).

(E) Briefly explain why the address family (of type sa_family_t) is always the first field in

the socket-related structs. [2 pt]

So we can always find those associated bytes in the same position and can use them to
check for which socket struct to cast to in order to properly read the rest of the data.

(F) Name one advantage and one disadvantage to using a non-blocking socket instead of a

blocking socket for network communications. [4 pt]

Advantage:
It doesn’t hold up/stall your program because the read/write function calls return
immediately.

Disadvantage:
The expected work may not have been done/finished.
You may need to check for when work is available first.

6

Question 4: Smart Pointers and Templates [19 pts]

A shared pointer will only increase its reference count when the copy constructor or assignment

operator is invoked (i.e. a shared pointer’s managed pointer is set from another shared pointer).

(A) Complete the main function below we’ve written to test this fact. Fill in the 4 statements

involving shared pointers as well as the blanks in the program output. [6 pt]

#include <iostream>
#include <memory>

using namespace std;

int main() {
 // create a shared pointer to the int 3.

 shared_ptr<int> p1(new int(3)________________________;
 cout << "p1.use_count() = " << p1.use_count() << endl;

 // test copy constructor. or: shared_ptr<int> p2 = p1

 shared_ptr<int> p2(p1)_______________________________;
 cout << "p2.use_count() = " << p2.use_count() << endl;

 // create a shared pointer to the same int that doesn’t
 // increase the reference count. = doesn’t work here

 shared_ptr<int> p3(p1.get())_________________________;
 cout << "p3.use_count() = " << p3.use_count() << endl;

 // test assignment operator to update p3. or: p3 = p2

 p3 = p1__;
 cout << "p3.use_count() = " << p3.use_count() << endl;
 return 0;
}

Program output:

Interestingly, *p3 (and *p1 and *p2) at the end is 0. The int was delete’d when the

assignment operator was called on p3 – its managed pointer dropped to a ref count of 0.

 p1.use_count() = __1__

 p2.use_count() = __2__

 p3.use_count() = __1__

 p3.use_count() = __3__

SID: __________

7

Let’s examine a singly-linked list. Assume that all necessary headers are included and we are

using namespace std.

(B) Define a struct template named Node that uses shared pointers for its fields value and

next. Include a declaration for a two-argument constructor that takes a shared pointer

for the next node and a raw pointer for the value. [6 pt]

// by default, all members of a struct are public
template <typename T> struct Node {

 Node(shared_ptr<Node<T>> node, T *val);

 shared_ptr<T> value;
 shared_ptr<Node<T>> next;

};

(C) Assume we have the function defined below to add a new node at the beginning of the list:

 template <typename T>

 shared_ptr<Node<T>> push(shared_ptr<Node<T>> head, T *val) {

 return shared_ptr<Node<T>>(new Node<T>(head, val));

 }

Assume we execute the following lines of code. Draw a memory diagram that includes the

reference count of each smart pointer as “ref #” on the corresponding arrow. [7 pt]

 shared_ptr<Node<int>> head;

 head = push<int>(head, new int(2));

 head = push<int>(head, new int(4));

 shared_ptr<Node<int>> iter(head->next);

head iter

value

next

value

next

4 2
ref: 1

ref: 1 ref: 1

ref: 2

ref: 2

8

Question 5: C++ Inheritance [24 pts]

Consider the following C++ classes. The code below causes no compiler errors.

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { cout << "A::f1" << endl; }
 void f2() { f1(); cout << "A::f2" << endl; }

 protected:
 int x_ = 351;
};

class B : public A {
 public:
 void f1() { cout << "B::f1" << endl; }
 virtual void f3() { cout << "B::f3" << endl; }

 protected:
 int y_ = 333;
};

class C : public B {
 public:
 virtual void f2() { cout << "C::f2" << endl; }

};

(A) Draw a conceptual diagram of a default-constructed object of class B below. Don’t

show vptr’s. [2 pt]

Subobject of class A

within class B object.

(B) We wish to write constructors for class A and class B to help us initialize our data

members. Complete the definitions below: [3 pt]

A::A(int x) : x_(x) { }

B::B(int x, int y) : A(x), y_(y) { }

// must call base class constructor in initializer list

351 333 x_ y_

SID: __________

9

(C) Complete the virtual function table diagram below by adding the remaining class

methods on the right and then drawing the appropriate function pointers from the vtables.

Ordering of the function pointers matters! One is already included for you. [9 pt]

(D) Assume we have objects and pointers as defined in the two lines of code below. Then, for

each row of the table below, fill in the result on the right, which should either be the

corresponding stdout output, “compile error,” or “runtime error.” [10 pt]

 A a; B b; C c; // object instances
 A *ap1 = &a; A *ap2 = &b; B *bp1 = &c; // pointers

ap1->f1(); A::f1

ap1->f2(); A::f1
A::f2

ap2->f1(); B::f1

ap2->f3(); compile error (A has no f3)

bp1->f2(); B::f1 (static dispatch of f1)
A::f2

bp1->f3(); B::f3

f1

f3

f1

f3

A vtable

B vtable

C vtable

f1

f3

f2

FUNCTION CODE

A::f1

A::f2

B::f1

B::f3

C::f2

10

Question 6: Pthreads [16 pts]

Consider the C program below that uses pthreads and compiles and executes without error.

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

#include <stdio.h>
#include <pthread.h>

int x = 3, ignore;

void *task1(void *p) {
 x -= 1;
 return NULL;
}

void *task2(void *p) {
 x *= 2;
 return NULL;
}

int main() {
 pthread_t t0, t1;
 ignore = pthread_create(&t0, NULL, &task1, NULL);
 ignore = pthread_create(&t1, NULL, &task2, NULL);
 pthread_join(t0, NULL);
 pthread_join(t1, NULL);
 printf("%d\n", x);
 return 0;
}

(A) List ALL possible printed values of this program if it is run as is. Separate the possible

values with commas in the box below. [4 pt]

2, 4, 5, 6

read 3, read 3, write 6, write 2 → 2 read 3, write 2, read 2, write 4 → 4

read 3, write 6, read 6, write 5 → 5 read 3, read 3, write 2, write 6 → 6

(B) We will add lock synchronization to prevent the threads from interfering with each

other. We will add the commands shown in the table below. In the right column, fill in

the half line position(s) where we will insert the command (e.g. “16.5” would mean just

before return 0; in main). [6 pt]

pthread Command Insert At Line(s)

static pthread_mutex_t lock; 0.5 (or 1.5)

pthread_mutex_init(&lock, NULL); 11.5 (or 10.5)

pthread_mutex_lock(&lock); 2.5, 6.5

pthread_mutex_unlock(&lock); 3.5, 7.5

SID: __________

11

(C) After adding lock synchronization, how many printed values are still possible? [2 pt]

4 and 5 still possible (swap order of thread execution). 2

(D) Even without lock synchronization, we can guarantee a single possible output by moving a

single line from our original code. Indicate which line to move and which half line position

to move it to: [2 pt]

Move Line __14__ to _12.5_

 Equivalently, Move Line 13 to 14.5.

 Yes, also possible to put both “work” statements in the same thread:

 Move Line 3 to 6.5 or 7.5

 Move Line 7 to 2.5 or 3.5

 Yes, also possible to move the printf() statement:

 Move Line 16 to 10.5 or 11.5

(E) Briefly describe what is problematic about the solution to part D. [2 pt]

Worse than sequential. We create a thread, but then wait until it finishes before we
create the next one.

Creating one thread that does no work involves unnecessary overhead.

Moving the printf() means the output doesn’t reflect the work done.

