
 CSE 333 Midterm Exam 2/12/16

 Page 1 of 9

Name __ UW ID# ____________

There are 6 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.

If you don’t remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for your answers – we
tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 12

2. ______ / 24

3. ______ / 22

4. ______ / 22

5. ______ / 15

6. ______ / 5

 CSE 333 Midterm Exam 2/12/16

 Page 2 of 9

Question 1. (12 points) Preprocessor. Consider the following C (not C++ files).
======
func.h
======
#ifndef _FUNC_H_
#define _FUNC_H_
#define FUN(a,b) a*b
#endif

======
nums.h
======
#ifndef _NUMS_H_
#define _NUMS_H_
#ifdef BIG
typedef long int num;
#else
typedef int num;
#endif
#define NBR 3
#endif

======
test.c
======
#include <stdio.h>
#include "nums.h"
#include "func.h"

#define BIG

num compute(int x) {
 return FUN(x+1,NBR);
}

int main() {
 printf("%d\n", compute(2));
 return 0;
}

(a) (10 points) Give the output produced by the preprocessor (cpp –P test.c) when
it reads and processes the file test.c. Ignore the #include <stdio.h> line – it
will insert the declarations from stdio.h and do nothing further. Otherwise, your
answer should show all of the output from the preprocessor. There are no preprocessor
errors in this program, and the resulting program compiles and executes without errors.

(b) (2 points) What does this program print when it is compiled and executed?

 CSE 333 Midterm Exam 2/12/16

 Page 3 of 9

Question 2. (24 points) C programming – with HashTables this time! This question
involves the data structures from the HW1 and HW2 projects. Copies of the
LinkedList.h, HashTable.h, and HashTable_priv.h header files have been
provided on separate pages.

For this problem give the implementation of a new function HashTableValues to be
added to HashTable.c. This function should return a newly-allocated array
containing copies of the values stored in the HashTable and also return the number of
values in (i.e., the size of) the new array. The function result should be 1 if it is able to
successfully allocate an array of the proper size and fill it with copies of the values found
in the HashTable (just the values, not the keys or <key,value> pairs). The function
result should be 0 if some error occurs. The array might, of course, wind up containing
some duplicate values if the same value occurs more than once in the HashTable in
separate <key,value> pairs. The order of the values is not specified since the elements of
a HashTable are not ordered.

Here is some sample code that shows how this function could be used to retrieve the
values in a HashTable and process them:

 HTValue_t *values;
 HWSize_t nvalues;

 // get value array and number of values
 int res = HashTableValues(ht, &values, &nvalues);
 Verify333(res == 1);

 // use returned values
 for (HWSize_t i = 0; i < nvalues; ++i) {
 HTValue_t val = values[i];
 // do something with val...
 }

 // free array when done
 free(values);

Your answer may use any of the functions or data declared in the LinkedList.h,
HashTable.h, and HashTable_priv.h headers. Don’t be alarmed if the solution
turns out to be fairly short.

Write your answer on the next page. You may remove this page from the exam while
you are working on the question, but please return it at the end of the hour.

 CSE 333 Midterm Exam 2/12/16

 Page 4 of 9

Question 2. (cont.) Write an implementation of function HashTableValues, below.

// Store in parameter nvalues the number of values in
// HashTable ht, and store in parameter values a pointer
// to a newly allocated array containing those values.
//
// Return 1 if the function is successful.
// Return 0 if some error occurs.

int HashTableValues(HashTable ht,
 HTValue_t **values, HWSize_t *nvalues){

}

 CSE 333 Midterm Exam 2/12/16

 Page 5 of 9

Question 3. (22 points) Pointy things. Consider the following program, which, in the
customary manner, compiles and executes with no warnings or errors:

#include <stdio.h>

void swap(int **a, int **b) {
 printf("swap1: **a = %d, **b = %d\n", **a, **b);
 int *tmp = *a; *b = *a; *a = tmp;
 //HERE!!!
 printf("swap2: **a = %d, **b = %d\n", **a, **b);
}

void mumble(int **p, int *q) {
 swap(p, &q);
 **p = *q;
}

int main() {
 int k = 3;
 int n = 7;
 int *p = &k;
 mumble(&p, &n);
 printf("main: k = %d, n = %d, *p = %d\n", k, n, *p);
 return 0;
}

(a) (14 points) Draw a boxes ‘n arrows diagram showing the memory layout and
contents at the point just before the second printf in function swap is executed
(marked with HERE!!! in the comment). Be sure your diagram clearly shows the values
of all variables in all active functions and has a separate box (i.e., stack frame) for each
active function. For each pointer, draw an arrow from the pointer to the variable that it
references. Use the space below the code and/or to the right for your diagram.

(b) (8 points) What does this program print when it is executed?

 CSE 333 Midterm Exam 2/12/16

 Page 6 of 9

Question 4. (22 points) The program on this page and the next opens two files, one for
reading and one for writing, and copies the contents of the first file to the second. Your
job is to complete the code by filling in the blanks lines with the correct POSIX I/O
function calls to handle the files (open, close, read, write).

Here is a summary of some key POSIX I/O functions for your reference.

int open(const char *name, int mode);
 mode is one of O_RDONLY, O_WRONLY, O_RDWR
int creat(const char *name, int mode);
 create a new file
int close(int fd);
ssize_t read(int fd, void *buffer, size_t count);
 returns # bytes read or 0 (eof) or -1 (error)
ssize_t write(int fd, void *buffer, size_t count);
 returns # bytes written or -1 (error)

Below is the code you are to complete. You should assume that all necessary header files
have been #included and you do not need write any other #includes.

#define SIZE 1024
int main(int argc, char** argv) {
 int fd1, fd2;
 char buf[SIZE];
 ssize_t rlen, total, wlen;

 if (argc != 3) {
 fprintf(stderr, "Usage: ./a.out <file1> <file2>\n");
 exit(1);
 }
 // open first file for reading

 __;

 if (fd1 == -1) {
 fprintf(stderr, "Could not open file for reading\n");
 exit(1);
 }
 // create the second file
 fd2 = creat(argv[2], 0777);
 if (fd2 == -1) {
 close(fd1);
 fprintf(stderr, "Could not create file for writing\n");
 exit(1);
 }

(code continued on next page)

 CSE 333 Midterm Exam 2/12/16

 Page 7 of 9

Question 4. (cont.) Continued from previous page.

 // Copy all data from fd1 to fd2
 do {

 // read next data from fd1 into buf

 __;

 if (rlen == -1) {
 if (errno != EINTR) {
 close(fd1);
 close(fd2);
 perror(NULL);
 exit(1);
 }
 continue;
 }
 // Write newly read data from buf to fd2
 total = 0;

 while (________________________) {

 __;

 if (wlen == -1) {
 if (errno != EINTR) {
 close(fd1);
 close(fd2);
 perror(NULL);
 exit(1);
 }
 continue;
 }

 __;
 }

 } while (__________________________________);

 // Close input and output files
 close(fd1);
 close(fd2);
 return 0;
}

 CSE 333 Midterm Exam 2/12/16

 Page 8 of 9

A few short-answer questions to finish up.

Question 5. (15 points) Here are three C functions that are supposed to return a pointer
to a new C string value (null-terminated array of characters) that the caller is responsible
for freeing when the caller is done with it. For each function, if it behaves as specified by
the comment, say so. If there are one or more bugs in the code, explain what’s wrong
and show how to fix the function so it works properly.

(a) // return a new string with a copy of str
 char *clone(char *str) {
 char *result = (char *)malloc(sizeof(str)+1);
 strcpy(result, str);
 return result;
 }

(b) // return a new string containing "hello"
 char *hello() {
 char *result = (char *)malloc(5);
 result = "hello";
 return result;
 }

(c) // return a new string containing "cse333"
 char *cse333() {
 char result[] = "cse333";
 return result;
 }

 CSE 333 Midterm Exam 2/12/16

 Page 9 of 9

Question 6. (5 points) In one of the C++ exercises we defined assignment for Vectors.
The function heading for assignment specified that it returned a reference:

 Vector &Vector::operator=(const Vector &rhs) {
 if (this != &rhs) {
 x_ = rhs.x_;
 y_ = rhs.y_;
 z_ = rhs.z_;
 }
 return *this;
 }

Suppose we accidentally omitted the & and wrote the function heading like this:

 Vector Vector::operator=(const Vector &rhs) { ... }

Now assume we have three vectors, v1, v2, and v3 and we write the following chained
assignment:

 v1 = v2 = v3;

Amazingly enough everything still compiles and executes without crashing (although
maybe not with exactly the right behavior). But something must be different. Describe
exactly what’s different when the chained assignment statement v1=v2=v3; is executed
using the second definition of operator= compared to the first one.

