
 CSE 333 Midterm Exam 2/12/16 Sample Solution

 Page 1 of 8

Question 1. (12 points) Preprocessor. Consider the following C (not C++ files).
======
func.h
======
#ifndef _FUNC_H_
#define _FUNC_H_
#define FUN(a,b) a*b
#endif

======
nums.h
======
#ifndef _NUMS_H_
#define _NUMS_H_
#ifdef BIG
typedef long int num;
#else
typedef int num;
#endif
#define NBR 3
#endif

======
test.c
======
#include <stdio.h>
#include "nums.h"
#include "func.h"

#define BIG

num compute(int x) {
 return FUN(x+1,NBR);
}

int main() {
 printf("%d\n", compute(2));
 return 0;
}

(a) (10 points) Give the output produced by the preprocessor (cpp –P test.c) when
it reads and processes the file test.c. Ignore the #include <stdio.h> line – it
will insert the declarations from stdio.h and do nothing further. Otherwise, your
answer should show all of the output from the preprocessor. There are no preprocessor
errors in this program, and the resulting program compiles and executes without errors.

typedef int num;

num compute(int x) {

 return x+1*3;

}

int main() {

 printf("%d\n", compute(2));

 return 0;

}

(b) (2 points) What does this program print when it is compiled and executed?

5

 CSE 333 Midterm Exam 2/12/16 Sample Solution

 Page 2 of 8

Question 2. (24 points) C programming – with HashTables this time! This question
involves the data structures from the HW1 and HW2 projects. Copies of the
LinkedList.h, HashTable.h, and HashTable_priv.h header files have been
provided on separate pages.

For this problem give the implementation of a new function HashTableValues to be
added to HashTable.c. This function should return a newly-allocated array
containing copies of the values stored in the HashTable and also return the number of
values in (i.e., the size of) the new array. The function result should be 1 if it is able to
successfully allocate an array of the proper size and fill it with copies of the values found
in the HashTable (just the values, not the keys or <key,value> pairs). The function
result should be 0 if some error occurs. The array might, of course, wind up containing
some duplicate values if the same value occurs more than once in the HashTable in
separate <key,value> pairs. The order of the values is not specified since the elements of
a HashTable are not ordered.

Here is some sample code that shows how this function could be used to retrieve the
values in a HashTable and process them:

 HTValue_t *values;
 HWSize_t nvalues;

 // get value array and number of values
 int res = HashTableValues(ht, &values, &nvalues);
 Verify333(res == 1);

 // use returned values
 for (HWSize_t i = 0; i < nvalues; ++i) {
 HTValue_t val = values[i];
 // do something with val...
 }

 // free array when done
 free(values);

Your answer may use any of the functions or data declared in the LinkedList.h,
HashTable.h, and HashTable_priv.h headers. Don’t be alarmed if the solution
turns out to be fairly short.

Write your answer on the next page. You may remove this page from the exam while
you are working on the question, but please return it at the end of the hour.

 CSE 333 Midterm Exam 2/12/16 Sample Solution

 Page 3 of 8

Question 2. (cont.) Write an implementation of function HashTableValues, below.

// Store in parameter nvalues the number of values in
// HashTable ht, and store in parameter values a pointer
// to a newly allocated array containing those values.
//
// Return 1 if the function is successful.
// Return 0 if some error occurs.

int HashTableValues(HashTable ht,
 HTValue_t **values, HWSize_t *nvalues){
 if (ht == NULL) // optional - during the test we said it
 return 0; // was ok to assume a non-empty table

 HWSize_t size = NumElementsInHashTable(ht);

 HTValue_t* vals =
 (HTValue_t*)malloc(sizeof(HTValue_t)*size);
 if (vals == NULL)
 return 0;

 HTIter it = HashTableMakeIterator(ht);

 if (it == NULL) {
 free(vals);
 return 0;
 }

 HWSize_t i;
 for (i = 0; i < size; ++i) {
 HTKeyValue kv;
 HTIteratorGet(it, &kv);
 vals[i] = kv.value;
 HTIteratorNext(it);
 }
 HTIteratorFree(it);

 *values = vals;
 *nvalues = size;

 return 1;
}

Notes: in production code we should check the results of the iterator functions each
time to be sure they return a new value and advance to the next element. For this
exam question we assumed that once the number of items in the table was known it
would be possible to retrieve exactly that many items successfully.

Another way to access the items in the table would be to use the iterator to control
the loop and continue as long as there was a next item, incrementing an array
subscript each time. Solutions that did that correctly also received full credit.

 CSE 333 Midterm Exam 2/12/16 Sample Solution

 Page 4 of 8

Question 3. (22 points) Pointy things. Consider the following program, which, in the
customary manner, compiles and executes with no warnings or errors:

#include <stdio.h>

void swap(int **a, int **b) {
 printf("swap1: **a = %d, **b = %d\n", **a, **b);
 int *tmp = *a; *b = *a; *a = tmp;
 //HERE!!!
 printf("swap2: **a = %d, **b = %d\n", **a, **b);
}

void mumble(int **p, int *q) {
 swap(p, &q);
 **p = *q;
}

int main() {
 int k = 3;
 int n = 7;
 int *p = &k;
 mumble(&p, &n);
 printf("main: k = %d, n = %d, *p = %d\n", k, n, *p);
 return 0;
}

(a) (14 points) Draw a boxes ‘n arrows diagram showing the memory layout and
contents at the point just before the second printf in function swap is executed
(marked with HERE!!! in the comment). Be sure your diagram clearly shows the values
of all variables in all active functions and has a separate box (i.e., stack frame) for each
active function. For each pointer, draw an arrow from the pointer to the variable that it
references. Use the space below the code and/or to the right for your diagram.

(b) (8 points) What does this program print when it is executed?

swap1: **a = 3, **b = 7
swap2: **a = 3, **b = 3
main: k = 3, n = 7, *p = 3

(Of course, the “swap” function doesn’t actually swap its arguments. That was not
intended, but since the question just asked what it did, we decided not to fix it.)

main%

k%__3__%

n%__7__%

p%

mumble%

p%

q%

swap%

a%

b%

tmp%

 CSE 333 Midterm Exam 2/12/16 Sample Solution

 Page 5 of 8

Question 4. (22 points) The program on this page and the next opens two files, one for
reading and one for writing, and copies the contents of the first file to the second. Your
job is to complete the code by filling in the blanks lines with the correct POSIX I/O
function calls to handle the files (open, close, read, write).

Here is a summary of some key POSIX I/O functions for your reference.

int open(const char *name, int mode);
 mode is one of O_RDONLY, O_WRONLY, O_RDWR
int creat(const char *name, int mode);
 create a new file
int close(int fd);
ssize_t read(int fd, void *buffer, size_t count);
 returns # bytes read or 0 (eof) or -1 (error)
ssize_t write(int fd, void *buffer, size_t count);
 returns # bytes written or -1 (error)

Below is the code you are to complete. You should assume that all necessary header files
have been #included and you do not need write any other #includes.

#define SIZE 1024
int main(int argc, char** argv) {
 int fd1, fd2;
 char buf[SIZE];
 ssize_t rlen, total, wlen;

 if (argc != 3) {
 fprintf(stderr, "Usage: ./a.out <file1> <file2>\n");
 exit(1);
 }
 // open first file for reading

 fd1 = open(argv[1], O_RDONLY);

 if (fd1 == -1) {
 fprintf(stderr, "Could not open file for reading\n");
 exit(1);
 }
 // create the second file
 fd2 = creat(argv[2], 0777);
 if (fd2 == -1) {
 close(fd1);
 fprintf(stderr, "Could not create file for writing\n");
 exit(1);
 }

(code continued on next page)

 CSE 333 Midterm Exam 2/12/16 Sample Solution

 Page 6 of 8

Question 4. (cont.) Continued from previous page.

 // Copy all data from fd1 to fd2
 do {

 // read next data from fd1 into buf

 rlen = read(fd1, buf, SIZE);

 if (rlen == -1) {
 if (errno != EINTR) {
 close(fd1);
 close(fd2);
 perror(NULL);
 exit(1);
 }
 continue;
 }
 // Write newly read data from buf to fd2
 total = 0;

 while (total < rlen) {

 wlen = write(fd2, buf + total, rlen - total);

 if (wlen == -1) {
 if (errno != EINTR) {
 close(fd1);
 close(fd2);
 perror(NULL);
 exit(1);
 }
 continue;
 }

 total += wlen;
 }

 } while (rlen > 0);

 // Close input and output files
 close(fd1);
 close(fd2);
 return 0;
}

 CSE 333 Midterm Exam 2/12/16 Sample Solution

 Page 7 of 8

A few short-answer questions to finish up.

Question 5. (15 points) Here are three C functions that are supposed to return a pointer
to a new C string value (null-terminated array of characters) that the caller is responsible
for freeing when the caller is done with it. For each function, if it behaves as specified by
the comment, say so. If there are one or more bugs in the code, explain what’s wrong
and show how to fix the function so it works properly.

(a) // return a new string with a copy of str
 char *clone(char *str) {
 char *result = (char *)malloc(sizeof(str)+1);
 strcpy(result, str);
 return result;
 }
Bug: malloc argument should be strlen(str)+1. sizeof(str) returns the
number of bytes in the pointer str, not the number of bytes in the string (char
array) it references. (In this and other parts of the question we assumed that
malloc would always succeed. That’s ok for these questions, although in
production code we should always check.)

(b) // return a new string containing "hello"
 char *hello() {
 char *result = (char *)malloc(5);
 result = "hello";
 return result;
 }
Two bugs: (minor) malloc argument should be 6, not 5, to allow for the ‘\0’ at the
end of the string. (major) The assignment to result overwrites the pointer to the
allocated array with a pointer to a constant string. That results in a memory leak,
and will cause an error later when the client tries to free the pointer to the constant
data. Fix: Change malloc(5) to malloc(strlen("hello")+1) or at least to
malloc(6), then replace the assignment with strcpy(result, "hello");

(c) // return a new string containing "cse333"
 char *cse333() {
 char result[] = "cse333";
 return result;
 }
Bug: This one returns a pointer properly, but, as with (b), the pointer references
constant data so it cannot be freed later by the caller. Fix: Same as previous
functions: use malloc to allocate an array of the proper length, then use strcpy
or some other appropriate function to copy the string data.

 CSE 333 Midterm Exam 2/12/16 Sample Solution

 Page 8 of 8

Question 6. (5 points) In one of the C++ exercises we defined assignment for Vectors.
The function heading for assignment specified that it returned a reference:

 Vector &Vector::operator=(const Vector &rhs) {
 if (this != &rhs) {
 x_ = rhs.x_;
 y_ = rhs.y_;
 z_ = rhs.z_;
 }
 return *this;
 }

Suppose we accidentally omitted the & and wrote the function heading like this:

 Vector Vector::operator=(const Vector &rhs) { ... }

Now assume we have three vectors, v1, v2, and v3 and we write the following chained
assignment:

 v1 = v2 = v3;

Amazingly enough everything still compiles and executes without crashing (although
maybe not with exactly the right behavior). But something must be different. Describe
exactly what’s different when the chained assignment statement v1=v2=v3; is executed
using the second definition of operator= compared to the first one.

If the & is omitted, the result type of the assignment is now Vector, not a reference
to a Vector. That means that a new Vector object will be created and initialized
by the copy constructor, and then that new, anonymous Vector would be returned
as the result of operator=. This temporary object will be the argument to the
chained assignment to v1. In this particular case, since it is a copy of v2 the correct
values will actually be stored in v1 after which the temporary Vector will be
discarded. The second assignment will return yet another temporary Vector,
which will be immediately discarded (although a smart compiler might optimize
away this extra object creation and destruction).

In any case, the chained assignment operator will not have a proper reference to
object v2 as its argument. In this case the code “accidentally” works, but only
because this particular sequence of assignments does not depend on the specific
Vector objects involved or their memory addresses.

Answers that were shorter and to the point were fine as long they clearly explained
the problem.

