
 CSE 333 Midterm Exam Sample Solution 5/1/15

 Page 1 of 8

Question 1. (18 points) C pointer swizzling. For this problem write a function to reverse
the order of the nodes in an integer linked list. The nodes of the list are defined as
follows:

typedef struct Node_t {
 int val; // value in this node
 struct Node_t * next; // next node, or NULL if none
} Node;

The function reverse must reverse the order of the nodes in the original list by traversing
the list in a single pass and update the next pointer in each node to point to the node that
preceded it in the original linked list. So, for instance, if the list was originally

then, after the reverse, the list should look like this:

Your code may not allocate or delete any Nodes – it needs to modify the next pointers
in the existing ones. You may not alter the val fields in any of the nodes. The result of
the function should be a pointer to the node that is now the “first” node in the list, which
was originally the “last” node – the node containing 3 in the example above. If the
function is asked to reverse an empty list (NULL) it should return NULL.

Hint: use the space below to draw a diagram and think through which pointers you need
to keep track of and how to traverse the list. The answer is fairly short once you’ve
thought it through. When you’re ready, fill in the function definition …

on…

the…

next…

page…

 |
 |
V

1 2 3

1 2 3

 CSE 333 Midterm Exam Sample Solution 5/1/15

 Page 2 of 8

Question 1. (18 points) Complete the definition of function reverse here:

// Reverse the nodes in the list starting at head
// and return a pointer to the new first node, which
// is the last node in the original list. If the
// list is empty, return NULL
Node * reverse(Node * head) {

 Node * curr; // current node in the list
 Node * prev; // node before curr in original list
 // (NULL if curr is the first node)
 Node * cnext; // curr->next if curr != NULL

 prev = NULL;
 curr = head;
 while (curr != NULL) {
 cnext = curr->next;
 curr->next = prev;
 prev = curr;
 curr = cnext;
 }
 // post: curr is NULL and prev points to last original
 // node, or null if list had no nodes
 return prev;

}

 CSE 333 Midterm Exam Sample Solution 5/1/15

 Page 3 of 8

Question 2. (18 points) Suppose we have the following files in the same directory.

File foo.h

#ifndef _FOO_H_
#define _FOO_H_

#define FOOBAR BAR - x
int foo(int x);

#endif // _FOO_H_

File foo.c

#include "./foo.h"
#define BAR 353

int foo(int x) {
 return FOOBAR / 10;
}

File foomain.c

#include <stdio.h>
#include "./foo.h"

int main(int argc, char* argv[]) {
 int nbr = foo(333);
 printf("The output of foo(333) is %d\n", nbr);
}

(a) (10 points) Below, write the output produced by the C preprocessor (cpp -P or
gcc -E) showing exactly how file foo.c (not foomain.c) is rewritten by cpp and
sent to the compiler phase of gcc. (The preprocessor can correctly process this file
without any blocking errors.)

int foo(int x);

int foo(int x) {
 return 353 - x / 10;
}

(b) (8 points) What output is produced when foo.c and foomain.c are compiled and
the resulting program is linked and executed?

The output of foo(333) is 320

 CSE 333 Midterm Exam Sample Solution 5/1/15

 Page 4 of 8

Question 3. (20 points) Bugs ‘R Us. Here is a small program that has some problems (at
least 2; almost certainly more than that). You should find all the bugs and give a brief
explanation of each problem. You are not required to fix the bugs (and there might not
be obvious fixes in some cases), but sometimes an easy way to explain a bug is to show
how to correct it. See comments in green for bugs

#include <stdio.h>

#include <stdlib.h>

typedef struct point {

 int x, y, z;

} Point, *PointPtr;

PointPtr add(PointPtr a, PointPtr b) {

 Point res;

 res.x = a->x + b->x;

 res.y = a->y + b->y;

 res.z = a->z + b->z;

 return &res; (returns a pointer to a local on the stack)
}

int main(int argc, char* argv[]) {

 Point a = {1, 2, 3};

 PointPtr b; (b never initialized. Undefined pointer dereferencing.)
 b->x = 3;

 b->y = 5;

 b->z = 7;

 PointPtr c = malloc(sizeof(PointPtr)); (should be sizeof(Point))

 c = add(&a, b); (memory leak – old c not freed first)
 printf("a = (%d, %d, %d)\n", a.x, a.y, a.z);

 printf("b = (%d, %d, %d)\n", b->x, b->y, b->z);

 printf("a + b = (%d, %d, %d)\n", c->x, c->y, c->z);

 free(b); (b not initialized, not a valid pointer to heap data)

 free(c); (freeing pointer to stack location returned by add)
}

 CSE 333 Midterm Exam Sample Solution 5/1/15

 Page 5 of 8

Question 4. (20 points) Suppose we have the following C header file, which contains
information needed to declare and use a ValStore type, which is a data structure that
holds key-value pairs. The actual implementation is private and not part of the header.

File ValStore.h:
#include <inttypes.h> // for uint64_t, etc.

struct ValStore_impl; // private
typedef struct ValStore_impl* ValStore;
typedef void* Value_t;

// Store key/val pair in ValStore vals
void storeValue(ValStore vals, uint64_t key, Value_t val);

// Retrieve val from ValStore vals given the key. Result
// is NULL if no value is stored with that key
void getValue(ValStore vals, uint64_t key, Value_t *val);

Here is some C client code that declares a type DataPack. Your job is to complete two
functions that store and retrieve DataPack values from a ValStore.

typedef struct DataPack_t {
 // details omitted -- not needed
} DataPack;

(a) (6 points) Write the function storeDataPack. Hint: this is very simple – it just
needs to call storeValue, so all you need to do is fill in appropriate parameters.

// store DataPack value in ValStore with a given code as the key
void storeDataPack(ValStore vs, uint64_t code, DataPack* data) {

 storeValue(____vs_____, ____code_____, ____data_____);
}

(b) (14 points) Write the function getDataPack. Hint: use getValue.

// Given a ValStore vals and a code, return a pointer to DataPack
// stored in vals whose key equals code, or NULL if not found
DataPack * getDataPack(ValStore vals, uint64_t code) {

}

 DataPack * data; // ptr to returned data

 getValue(vals, code, (Value_t *) &data);

 return data;

 CSE 333 Midterm Exam Sample Solution 5/1/15

 Page 6 of 8

Question 5. (18 points) A bit of C++ hacking. We are defining two related classes: class
Point is a simple 2-D point with integer x and y coordinate values:

File Point.h:

class Point {
 public:
 // constructor
 Point(int x, int y): x_(x), y_(y) { }

 // copy constructor
 Point(const Point & other): x_(other.x_),y_(other.y_) { }

 // accessors
 int get_x() const { return x_; }
 int get_y() const { return y_; }
 // no additional constructors, destructor, or assignment
 // defined explicitly in this class
 private:
 int x_, y_;
};

A Rectangle has two instance variables, which are pointers to Point objects
allocated on the heap. Each Rectangle has its own private copies of its corner
Points and does not share them with other Rectangles. Here is the class declaration:

File Rectangle.h:
#include "./Point.h"

// A rectangle is defined by two Point objects giving its
// upper-left and lower-right corners
class Rectangle {
 public:
 // constructor - parameters are upper-left and lower
 // right corners
 Rectangle(const Point &ul, const Point &lr);

 // copy constructor
 Rectangle(const Rectangle &other);

 // destructor
 ~Rectangle();

 // assignment
 Rectangle &operator=(const Rectangle &other);
 private:
 // Corners – privately owned copies of Point objects
 // allocated on the heap defining the corners of this
 // Rectangle.
 // Not shared with other Rectangles or other objects.
 Point * ul_; // upper-left corner
 Point * lr_; // lower-right corner
};

(Header guards omitted to save space. Feel free to detach this page for reference while
you answer the rest of the question on the next page.)

 CSE 333 Midterm Exam Sample Solution 5/1/15

 Page 7 of 8

Question 5. (cont) Here is the implementation of the basic constructor in
Rectangle.cc to give a little better idea of how the instance variables are used.

Rectangle::Rectangle(const Point &ul, const Point &lr) {
 ul_ = new Point(ul); // uses Point copy construcor
 lr_ = new Point(lr);
}

Your job is to provide implementations of the destructor and assignment operators for
class Rectangle. The destructor is easy. Assignment is harder because you have to be
careful about the differences between pointers and references, as well as the usual
problems implementing assignment, dealing with heap storage and so forth.

(a) (6 points) Give an implementation of the destructor for class Rectangle.

Rectangle::~Rectangle() {
 delete ul_;
 delete lr_;
}

(b) (12 points) Give an implementation of assignment for class Rectangle.

Rectangle &Rectangle::operator=(const Rectangle &other) {
 // return immediately if self assignment
 if (this == &other)
 return *this;
 // replace coordinates in our corners with other's
 delete ul_;
 delete lr_;
 ul_ = new Point(*other.ul_);
 lr_ = new Point(*other.lr_);
 return *this;
}

Instead of deleting and reallocating the heap Point objects, it is also possible, and
probably less expensive, to copy the Point values from other:

 *ul_ = Point(*other.ul_);
 *lr_ = Point(*other.lr_);

This also works: *ul_ = *other.ul_;. However an assignment like
ul_=other.ul_; has problems: it causes two Rectangles to share (alias)
Points, it creates a memory leak by overwriting ul_ before freeing it, and
eventually there are multiple deletes of the shared Point objects.

Although this code “works” if the self-assignment check (this==&other) is
omitted, that should always be included unless there is a very good reason to omit it,
and then a comment about why it is not included must be provided.

 CSE 333 Midterm Exam Sample Solution 5/1/15

 Page 8 of 8

Question 6. (6 points) Git. Suppose you enter a git status command and see the
following output:

bash$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: LinkedList.c
 modified: HashTable.c

no changes added to commit (use "git add" and/or "git commit -a")

What commands, if any, should you execute so that your Gitlab repository is up to date
with current copies of all files? If no further commands are needed and the repository is
up to date, simply answer “none”.

There are several possible answers, of course (hey, it’s git!), but what needs to be
done is to commit the changes and push them to the repository. This will work:

git add LinkedList.c HashTable.c

git commit -m "commit message"

git push

