
CSE 333, Winter 2026L12: C++ Class Details, Heap

1

Where are you so far on Homework 2?

A. Haven’t started yet
B. Working on Part A (File Parser)
C. Working on Part B (File Crawler and Indexer)
D. Working on Part C (Query Processor)
E. Done!
F. Prefer not to say

pollev.com/cse333j

CSE 333, Winter 2026L12: C++ Class Details, Heap

Systems Programming
C++ Class Details, Heap
Systems Programming
C++ Class Details, Heap

Instructors:

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE 333, Winter 2026L12: C++ Class Details, Heap

Relevant Course Information

❖ Exercise 10 due Wednesday

▪ Modified version of Exercise 9 to incorporate the heap

❖ Homework 2 due Thursday (2/5)

▪ Don’t modify the header files! Don’t forget to double-/triple-
/quadruple-check your hw2-submit tag for compilation!

❖ Midterm: February 9 from 5:30–6:40 PM

▪ BAG 131 or JHN 102, depending on your registered quiz section

▪ Reference sheet and two-sided handwritten cheat sheet!

▪ Midterm review session on Friday (2/6) from 4:30–6:20 PM

▪ Practice midterms and solutions on the course website

3

https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/JHN_102.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/ref-mt.pdf
https://courses.cs.washington.edu/courses/cse333/26wi/exams/ref-mt.pdf

CSE 333, Winter 2026L12: C++ Class Details, Heap

Lecture Outline (1/2)

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap

▪ new / delete / delete[]

4

CSE 333, Winter 2026L12: C++ Class Details, Heap

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

▪ Can explicitly ask for default synthesized versions (C++11):

5

class Point {
 public:
 Point() = default; // the default ctor
 ~Point() = default; // the default dtor
 Point(const Point& copyme) = default; // the default cctor
 Point& operator=(const Point& rhs) = default; // the default "="
 ...

CSE 333, Winter 2026L12: C++ Class Details, Heap

Dealing with the Insanity (C++11)

❖ C++ style guide tip:

▪ Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

6

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 ...
 Point(const Point& copyme) = delete; // declare cctor and "=" as
 Point& operator=(const Point& rhs) = delete; // as deleted (C++11)
 private:
 ...
}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point_2011.h

CSE 333, Winter 2026L12: C++ Class Details, Heap

Access Control

❖ Access modifiers for members:

▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

▪ protected: accessible to member functions of the class and
any derived classes (subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another
access modifier is reached

▪ If no access modifier is specified, struct members default to
public and class members default to private

7

CSE 333, Winter 2026L12: C++ Class Details, Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that
happen to use some class

▪ Called like a regular function instead of as a member of a class
object instance

• This gets a little weird when we talk about operators…

▪ These do not have access to the class’ private members

❖ Useful nonmember functions often included as part of
interface to a class

▪ Declaration goes in header file, but outside of class definition

8

CSE 333, Winter 2026L12: C++ Class Details, Heap

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to
its non-public members by declaring it as a friend
within its definition

▪ Not a class member, but has access privileges as if it were

▪ friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

9

class Complex {
 ...
 friend std::istream& operator>>(std::istream& in, Complex& a);
 ...
}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
 ...
}

Complex.h

Complex.cc

CSE 333, Winter 2026L12: C++ Class Details, Heap

When to use Nonmember and friend

❖ Member functions:

▪ Operators that modify the object being called on

• Assignment operator (operator=)

▪ “Core” non-operator functionality that is part of the class
interface

❖ Nonmember functions:

▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to

10

There is more to C++ object design that we don’t

have time to get to; these are good rules of thumb,

but be sure to think about your class carefully!

STYLE
TIP

CSE 333, Winter 2026L12: C++ Class Details, Heap

11

If we wanted to overload operator== to
compare two Point objects, what type
of function should it be?
❖ Reminder that Point has getters and a setter

A. non-friend + member

B. friend + member

C. non-friend + non-member

D. friend + non-member

E. I’m lost…

pollev.com/cse333j

CSE 333, Winter 2026L12: C++ Class Details, Heap

Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions!

❖ Namespace definition:

▪ namespace name {
 // declarations go here
}

▪ Doesn’t end with a semi-colon and doesn’t add to the indentation
of its contents

▪ Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)

• This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

12

namespace name {
// declarations go here
} // namespace name

ll::Iterator

ht::Iterator

Same name, but

different

namespace

Namespace doesn’t add

indentation to contents

Comment to remind that this

is end of namespace

lowercase

CSE 333, Winter 2026L12: C++ Class Details, Heap

Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not
namespaces:

▪ There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

▪ To access a member of a namespace, you must use the fully
qualified name (i.e., nsp_name::member)

• Unless you are using that namespace

• You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

13

CSE 333, Winter 2026L12: C++ Class Details, Heap

Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

14

CSE 333, Winter 2026L12: C++ Class Details, Heap

Lecture Outline (2/2)

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap

▪ new / delete / delete[]

15

CSE 333, Winter 2026L12: C++ Class Details, Heap

C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that
references nothing

❖ C++11 introduced a new literal for this: nullptr

▪ New reserved word

▪ Interchangeable with NULL for all practical purposes, but it has
type T* for any/every T, and is not an integer value

• Avoids funny edge cases (see C++ references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

16

STYLE
TIP

CSE 333, Winter 2026L12: C++ Class Details, Heap

new/delete

❖ To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h

▪ You can use new to allocate an object (e.g., new Point)

▪ You can use new to allocate a primitive type (e.g., new int)

❖ To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h

▪ Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

17

CSE 333, Winter 2026L12: C++ Class Details, Heap

new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

▪ You don’t need to check that new returns nullptr

• When an error is encountered, an exception is thrown (that we won’t
worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get
undefined behavior (same as when you double free in C)

18

CSE 333, Winter 2026L12: C++ Class Details, Heap

new/delete Example

19

#include "Point.h"

... // definitions of AllocateInt() and AllocatePoint()

int main() {
 Point* x = AllocatePoint(1, 2);
 int* y = AllocateInt(3);

 cout << "x's x_ coord: " << x->get_x() << endl;
 cout << "y: " << y << ", *y: " << *y << endl;

 delete x;
 delete y;
 return EXIT_SUCCESS;
}

int* AllocateInt(int x) {
 int* heapy_int = new int;
 *heapy_int = x;
 return heapy_int;
}

Point* AllocatePoint(int x, int y) {
 Point* heapy_pt = new Point(x,y);
 return heapy_pt;
}

heappoint.cc

CSE 333, Winter 2026L12: C++ Class Details, Heap

Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new type[size];
or new type;

– Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

20

type* name = new type[size];

delete[] name;

CSE 333, Winter 2026L12: C++ Class Details, Heap

Arrays Example (primitive)

21

#include "Point.h"

int main() {
 int stack_int;
 int* heap_int = new int;
 int* heap_int_init = new int(12);

 int stack_arr[3];
 int* heap_arr = new int[3];

 int* heap_arr_init_val = new int[3]();
 int* heap_arr_init_lst = new int[3]{4, 5}; // C++11

 ...

 delete heap_int; //
 delete heap_int_init; //
 delete heap_arr; //
 delete[] heap_arr_init_val; //

 return EXIT_SUCCESS;
}

arrays.cc

CSE 333, Winter 2026L12: C++ Class Details, Heap

Arrays Example (class objects)

22

#include "Point.h"

int main() {
 ...

 Point stack_pt(1, 2);
 Point* heap_pt = new Point(1, 2);

 Point* heap_pt_arr_err = new Point[2];

 Point* heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};
 // C++11
 ...

 delete heap_pt;
 delete[] heap_pt_arr_init_lst;

 return EXIT_SUCCESS;
}

arrays.cc

CSE 333, Winter 2026L12: C++ Class Details, Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

23

CSE 333, Winter 2026L12: C++ Class Details, Heap

▪ If there is an error,
how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

24

What will happen when we invoke Bar()?

Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
 foo_ptr_ = new int;
 *foo_ptr_ = val;
}

Foo& Foo::operator=(const Foo& rhs) {
 delete foo_ptr_;
 Init(*(rhs.foo_ptr_));
 return *this;
}

void Bar() {
 Foo a(10);
 Foo b(20);
 a = a;
}

pollev.com/cse333j

CSE 333, Winter 2026L12: C++ Class Details, Heap

Rule of Three, Revisited

❖ Now what will happen when we invoke Bar()?

▪ If there is an error,
how would you fix it?

25

Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
 foo_ptr_ = new int;
 *foo_ptr_ = val;
}

Foo& Foo::operator=(const Foo& rhs) {
 if (&rhs != this) {
 delete foo_ptr_;
 Init(*(rhs.foo_ptr_));
 }
 return *this;
}

void Bar() {
 Foo a(10);
 Foo b = a;
}

CSE 333, Winter 2026L12: C++ Class Details, Heap

Extra Exercise #1

❖ Write a C++ function that:

▪ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

26

CSE 333, Winter 2026L12: C++ Class Details, Heap

An extra example for practice with class design and heap-
allocated data: a C-string wrapper class classed Str.

27

BONUS SLIDES

CSE 333, Winter 2026L12: C++ Class Details, Heap

Heap Member (extra example)

❖ Let’s build a class to simulate some of the functionality of
the C++ string

▪ Internal representation: c-string to hold characters

❖ What might we want to implement in the class?

28

CSE 333, Winter 2026L12: C++ Class Details, Heap

Str Class

29

#include <iostream>
using namespace std; // should replace this

class Str {
 public:
 Str(); // default ctor
 Str(const char* s); // c-string ctor
 Str(const Str& s); // copy ctor
 ~Str(); // dtor

 int length() const; // return length of string
 char* c_str() const; // return a copy of st_
 void append(const Str& s);

 Str& operator=(const Str& s); // string assignment

 friend std::ostream& operator<<(std::ostream& out, const Str& s);

 private:
 char* st_; // c-string on heap (terminated by '\0')
}; // class Str

Str.h

CSE 333, Winter 2026L12: C++ Class Details, Heap

Str::append (extra example)

❖ Complete the append() member function:
▪ char* strncpy(char* dst, char* src, size_t num);

▪ char* strncat(char* dst, char* src, size_t num);

30

#include <cstring>
#include "Str.h"
// append contents of s to the end of this string
void Str::append(const Str& s) {

}

	Slide 1: Where are you so far on Homework 2?
	Slide 2: Systems Programming C++ Class Details, Heap
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/2)
	Slide 5: Rule of Three
	Slide 6: Dealing with the Insanity (C++11)
	Slide 7: Access Control
	Slide 8: Nonmember Functions
	Slide 9: friend Nonmember Functions
	Slide 10: When to use Nonmember and friend
	Slide 11: If we wanted to overload operator== to compare two Point objects, what type of function should it be?
	Slide 12: Namespaces
	Slide 13: Classes vs. Namespaces
	Slide 14: Complex Example Walkthrough
	Slide 15: Lecture Outline (2/2)
	Slide 16: C++11 nullptr
	Slide 17: new/delete
	Slide 18: new/delete Behavior
	Slide 19: new/delete Example
	Slide 20: Dynamically Allocated Arrays
	Slide 21: Arrays Example (primitive)
	Slide 22: Arrays Example (class objects)
	Slide 23: malloc vs. new
	Slide 24: What will happen when we invoke Bar()?
	Slide 25: Rule of Three, Revisited
	Slide 26: Extra Exercise #1
	Slide 27
	Slide 28: Heap Member (extra example)
	Slide 29: Str Class
	Slide 30: Str::append (extra example)

