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Where are you so far on Homework 2?

A. Haven’t started yet
B. Working on Part A (File Parser)
C. Working on Part B (File Crawler and Indexer)
D. Working on Part C (Query Processor)
E. Done!
F. Prefer not to say

pollev.com/cse333j
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Relevant Course Information

❖ Exercise 10 due Wednesday

▪ Modified version of Exercise 9 to incorporate the heap

❖ Homework 2 due Thursday (2/5)

▪ Don’t modify the header files! Don’t forget to double-/triple-
/quadruple-check your hw2-submit tag for compilation!

❖ Midterm: February 9 from 5:30–6:40 PM

▪ BAG 131 or JHN 102, depending on your registered quiz section

▪ Reference sheet and two-sided handwritten cheat sheet!

▪ Midterm review session on Friday (2/6) from 4:30–6:20 PM

▪ Practice midterms and solutions on the course website
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https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/JHN_102.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/ref-mt.pdf
https://courses.cs.washington.edu/courses/cse333/26wi/exams/ref-mt.pdf
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Lecture Outline (1/2)

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap

▪ new / delete / delete[]
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Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

▪ Can explicitly ask for default synthesized versions (C++11):

5

class Point {
 public:
  Point() = default;                            // the default ctor
  ~Point() = default;                           // the default dtor
  Point(const Point& copyme) = default;         // the default cctor
  Point& operator=(const Point& rhs) = default; // the default "="
  ...
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Dealing with the Insanity (C++11)

❖ C++ style guide tip:

▪ Disabling the copy constructor and assignment operator can avoid 
confusion from implicit invocation and excessive copying
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class Point {
 public:
  Point(const int x, const int y) : x_(x), y_(y) { }  // ctor
  ...
  Point(const Point& copyme) = delete;   // declare cctor and "=" as
  Point& operator=(const Point& rhs) = delete; // as deleted (C++11)
 private:
  ...
};  // class Point

Point w;        // compiler error (no default constructor)
Point x(1, 2);  // OK!
Point y = w;    // compiler error (no copy constructor)
y = x;          // compiler error (no assignment operator)

Point_2011.h
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Access Control

❖ Access modifiers for members:

▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

▪ protected: accessible to member functions of the class and 
any derived classes (subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another 
access modifier is reached

▪ If no access modifier is specified, struct members default to 
public and class members default to private
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Nonmember Functions

❖ “Nonmember functions” are just normal functions that 
happen to use some class

▪ Called like a regular function instead of as a member of a class 
object instance

• This gets a little weird when we talk about operators…

▪ These do not have access to the class’ private members

❖ Useful nonmember functions often included as part of 
interface to a class

▪ Declaration goes in header file, but outside of class definition
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friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to 
its non-public members by declaring it as a friend 
within its definition

▪ Not a class member, but has access privileges as if it were

▪ friend functions are usually unnecessary if your class includes 
appropriate “getter” public functions
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class Complex {
  ...
  friend std::istream& operator>>(std::istream& in, Complex& a);
  ...
};  // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
  ...
}

Complex.h

Complex.cc
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When to use Nonmember and friend

❖ Member functions:

▪ Operators that modify the object being called on

• Assignment operator (operator=)

▪ “Core” non-operator functionality that is part of the class 
interface

❖ Nonmember functions:

▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of 
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to
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There is more to C++ object design that we don’t 

have time to get to; these are good rules of thumb, 

but be sure to think about your class carefully!

STYLE
TIP
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If we wanted to overload operator== to 
compare two Point objects, what type 
of function should it be?
❖ Reminder that Point has getters and a setter

A.  non-friend + member

B.  friend + member

C.  non-friend + non-member

D.  friend + non-member

E.  I’m lost…

pollev.com/cse333j
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Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions!

❖ Namespace definition:

▪ namespace name {
  // declarations go here
}  

▪ Doesn’t end with a semi-colon and doesn’t add to the indentation 
of its contents

▪ Creates a new namespace name if it did not exist, otherwise adds 
to the existing namespace (!)

• This means that components (e.g., classes, functions) of a namespace 
can be defined in multiple source files
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namespace name {
// declarations go here
}  // namespace name

ll::Iterator

ht::Iterator

Same name, but 

different 

namespace

Namespace doesn’t add 

indentation to contents

Comment to remind that this 

is end of namespace

lowercase
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Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not 
namespaces:

▪ There are no instances/objects of a namespace; a namespace is 
just a group of logically-related things (classes, functions, etc.)

▪ To access a member of a namespace, you must use the fully 
qualified name (i.e., nsp_name::member)

• Unless you are using that namespace

• You only used the fully qualified name of a class member when you 
are defining it outside of the scope of the class definition

13
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Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

14
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Lecture Outline (2/2)

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap

▪ new / delete / delete[]
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C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that 
references nothing

❖ C++11 introduced a new literal for this:  nullptr

▪ New reserved word

▪ Interchangeable with NULL for all practical purposes, but it has 
type T* for any/every T, and is not an integer value

• Avoids funny edge cases (see C++ references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

16

STYLE
TIP
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new/delete

❖ To allocate on the heap using C++, you use the new 
keyword instead of malloc() from stdlib.h

▪ You can use new to allocate an object (e.g., new Point)

▪ You can use new to allocate a primitive type (e.g., new int)

❖ To deallocate a heap-allocated object or primitive, use the 
delete keyword instead of free() from stdlib.h

▪ Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

17
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new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for 
objects and uninitialized (“mystery”) data for primitives

▪ You don’t need to check that new returns nullptr

• When an error is encountered, an exception is thrown (that we won’t 
worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get 
undefined behavior (same as when you double free in C)

18
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new/delete Example
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#include "Point.h"

...  // definitions of AllocateInt() and AllocatePoint()

int main() {
  Point* x = AllocatePoint(1, 2);
  int* y = AllocateInt(3);

  cout << "x's x_ coord: " << x->get_x() << endl;
  cout << "y: " << y << ", *y: " << *y << endl;

  delete x;
  delete y;
  return EXIT_SUCCESS;
}

int* AllocateInt(int x) {
  int* heapy_int = new int;
  *heapy_int = x;
  return heapy_int;
}

Point* AllocatePoint(int x, int y) {
  Point* heapy_pt = new Point(x,y);
  return heapy_pt;
}

heappoint.cc
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Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t 
always tell if name* was allocated with new type[size]; 
or new type;

– Especially inside a function where a pointer parameter could point to a 
single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior
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type* name = new type[size];

delete[] name;
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Arrays Example (primitive)
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#include "Point.h"

int main() {
  int stack_int;
  int* heap_int = new int;
  int* heap_int_init = new int(12);

  int stack_arr[3];
  int* heap_arr = new int[3];

  int* heap_arr_init_val = new int[3]();  
  int* heap_arr_init_lst = new int[3]{4, 5};  // C++11

  ...

  delete heap_int;             //
  delete heap_int_init;        //
  delete heap_arr;             //
  delete[] heap_arr_init_val;  //

  return EXIT_SUCCESS;
}

arrays.cc
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Arrays Example (class objects)
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#include "Point.h"

int main() {
  ...

  Point stack_pt(1, 2);
  Point* heap_pt = new Point(1, 2);

  Point* heap_pt_arr_err = new Point[2];  

  Point* heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};
                                                      // C++11
  ...

  delete heap_pt;
  delete[] heap_pt_arr_init_lst;

  return EXIT_SUCCESS;
}

arrays.cc
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malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects, 

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

23
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▪ If there is an error, 
how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…
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What will happen when we invoke Bar()?

Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
   foo_ptr_ = new int; 
  *foo_ptr_ = val;
}

Foo& Foo::operator=(const Foo& rhs) {
  delete foo_ptr_;
  Init(*(rhs.foo_ptr_));
  return *this; 
}

void Bar() {
  Foo a(10);
  Foo b(20);
  a = a;
}

pollev.com/cse333j
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Rule of Three, Revisited

❖ Now what will happen when we invoke Bar()?

▪ If there is an error, 
how would you fix it?
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Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
   foo_ptr_ = new int; 
  *foo_ptr_ = val;
}

Foo& Foo::operator=(const Foo& rhs) {
  if (&rhs != this) { 
    delete foo_ptr_;
    Init(*(rhs.foo_ptr_));
  }
  return *this; 
}

void Bar() {
  Foo a(10);
  Foo b = a;
}
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Extra Exercise #1

❖ Write a C++ function that:

▪ Uses new to dynamically allocate an array of strings and uses 
delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new 

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

26
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An extra example for practice with class design and heap-
allocated data: a C-string wrapper class classed Str.

27

BONUS SLIDES
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Heap Member (extra example)

❖ Let’s build a class to simulate some of the functionality of 
the C++ string

▪ Internal representation: c-string to hold characters

❖ What might we want to implement in the class?

28
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Str Class
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#include <iostream>
using namespace std;   // should replace this

class Str {
 public:
  Str();               // default ctor
  Str(const char* s);  // c-string ctor
  Str(const Str& s);   // copy ctor
  ~Str();              // dtor

  int length() const;  // return length of string
  char* c_str() const; // return a copy of st_
  void append(const Str& s);

  Str& operator=(const Str& s);  // string assignment

  friend std::ostream& operator<<(std::ostream& out, const Str& s);

 private:
  char* st_;  // c-string on heap (terminated by '\0')
};  // class Str

Str.h
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Str::append (extra example)

❖ Complete the append() member function:
▪ char* strncpy(char* dst, char* src, size_t num);

▪ char* strncat(char* dst, char* src, size_t num);
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#include <cstring>
#include "Str.h"
// append contents of s to the end of this string
void Str::append(const Str& s) {

}
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