W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

0 PO" Evel‘yWhel‘e pollev.com/cse333;j I

Where are you so far on Homework 2?

mmooOw>

Working on Part A (File Parser)
Working on Part B (File Crawler and Indexer)

. Working on Part C (Query Processor)

Done!
Prefer not to say

"

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

CSE 333, Winter 2026

Systems Programming
C++ Class Details, Heap

Instructors:
Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson
Grace Zhou Jackson Kent Janani Raghavan
Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Relevant Course Information

» Exercise 10 due Wednesday

" Modified version of Exercise 9 to incorporate the heap

» Homework 2 due Thursday (2/5)

" Don’t modify the header files! Don’t forget to double-/triple-
/quadruple-check your hw2-submit tag for compilation!

» Midterm: February 9 from 5:30-6:40 PM
= BAG 131 orJHN 102, depending on your registered quiz section
= Reference sheet and two-sided handwritten cheat sheet!
= Midterm review session on Friday (2/6) from 4:30—-6:20 PM
" Practice midterms and solutions on the course website

https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/JHN_102.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/ref-mt.pdf
https://courses.cs.washington.edu/courses/cse333/26wi/exams/ref-mt.pdf

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Lecture Outline (1/2)

+ Class Details

" Filling in some gaps from last time
+» Using the Heap

" new/delete/delete|]

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Rule of Three

+ |f you define any of:
1) Destructor
2) Copy Constructor
3) Assignment (operator=)

+ Then you should normally define all three

= Can explicitly ask for default synthesized versions (C++11):

(class Point {

public:

Point() = default; // the default ctor

~Point() = default; // the default dtor

Point(const Point& copyme) = default; // the default cctor

Point& operator=(const Point& rhs) = default; // the default "="

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Dealing with the Insanity (C++11)

+» C++ style guide tip:

= Disabling the copy constructor and assignment operator can avoid

confusion from implicit invocation and excessive copying
Point_2011.h

N\

[class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { } // ctor

Point(const Point& copyme) = delete; // declare cctor and "=" as

Point& operator=(const Point& rhs) = delete; // as deleted (C++11)
private:

}s; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = X; // compiler error (no assignment operator)

\. J

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Access Control

+ Access modifiers for members:
= public:accessible to all parts of the program

= private: accessible to the member functions of the class
- Private to class, not object instances

"= protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

" |If no access modifier is specified, struct members default to
publicand class members defaultto private

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Nonmember Functions

+» “Nonmember functions” are just normal functions that

happen to use some class

= Called like a regular function instead of as a member of a class
object instance
- This gets a little weird when we talk about operators...

" These do not have access to the class’ private members

+ Useful nonmember functions often included as part of

interface to a class
= Declaration goes in header file, but outside of class definition

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

fr1end Nonmember Functions

+ A class can give a nonmember function (or class) access to
its non-pub 11 ¢ members by declaringitasa friend
within its definition
"= Not a class member, but has access privileges as if it were

*" friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

Complex.h
\

(class Complex {
friend std::istream& operator>>(std::istream& in, Complex& a);

\}; // class Complex

[std::istream& operator>>(std::istream& in, Complex& a) {

} e

. J

Complex.cc 4

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

When to use Nonmember and friend °Ii

There is wore to C++ object design that we don't
have time to get to; these are good rules of thumb,
but be sure to think about your class carefully!

" QOperators that modify the object being called on
- Assignment operator (operator=)

+ Member functions:

= “Core” non-operator functionality that is part of the class
interface

+ Nonmember functions:

= Used for commutative operators

- e.g.,sovl + v2 isinvoked as operator+(vl, v2)instead of
vl.operator+(v2)

= |f operating on two types and the class is on the right-hand side
- e.g.,cin >> complex;

= Returning a “new” object, not modifying an existing one

" Only grant friend permission if you NEED to

10

WA UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

0 PO" Evel‘yWhel‘e pollev.com/cse333;j g

If we wanted to overload operator==to

compare two Point objects, what type
of function should it be?

< Reminder that Po1nt has getters and a setter
A.

friend + member

B.

C. non-friend + non-member
D. friend + non-member

E.

I’'m lost...

11

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Same name, but

Namespaces differeut

namespace

+» Each namespace is a separate scope [l:Tterator /

i i . tuIterator
= Useful for avoiding symbol collisions! 4 0

lowercase
2 Namespace deflnltlon/ Namespace docsnt add
m namespace name { // mdentation to contents
// declarations gl here Comment o remind that this
\} // namespace name «] is end of namespace

= Doesn’t end with a semi-colon and doesn’t add to the indentation

of its contents
= Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)

- This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

12

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
namespaces.
" There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e., nsp_name: : member)

- Unless you are using that namespace

« You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

13

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Complex Example Walkthrough

See:

Complex.h
Complex.cc
testcomplex.cc

14

WA UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Lecture Outline (2/2)

« Class Details

" Filling in some gaps from last time
+» Using the Heap
" new/delete/delete[]

15

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

C++11 nullptr i

+» Cand C++ have long used NUL L as a pointer value that
references nothing

% C++11 introduced a new literal for this: nullptr
= New reserved word

" |nterchangeable with NUL L for all practical purposes, but it has
type T* for any/every T, and is not an integer value

- Avoids funny edge cases (see C++ references for details)
- Still can convert to/from integer O for tests, assighment, etc.
= Advice: prefer nul Lptrin C++11 code

- Though NULL will also be around for a long, long time

16

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

new/delete

+ To allocate on the heap using C++, you use the new
keyword instead of malloc () from stdlib.h
® You can use new to allocate an object (e.g., new Point)
" You can use new to allocate a primitive type (e.g., new int)

+» To deallocate a heap-allocated object or primitive, use the
de lete keyword instead of free () from stdlib.h
" Don’t mix and match!
- Never free () something allocated with new

- Never delete something allocated with malloc ()
- Careful if you’re using a legacy C code library or module in C++

17

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

new/delete Behavior

+» new behavior:
= When allocating you can specify a constructor or initial value
- e.g.,new Point(l, 2),new int(333)

= If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

" You don’t need to check that new returns nu L Lptr

- When an error is encountered, an exception is thrown (that we won’t
worry about)

+» delete behavior:

" |fyou delete already de leted memory, then you will get
undefined behavior (same as when you double free in C)

18

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

new/delete Example

[intx AllocateInt(int x) { Y [Pointx AllocatePoint(int x, int y) {\
intx heapy_int = new 1int; Pointx heapy_pt = new Point(x,y);
*heapy_int = x; return heapy_pt;
return heapy_int; }

\} J L J

heappoint.cc

\

[#include "Point.h"

// definitions of AllocateInt() and AllocatePoint()

int main() {
Pointx x = AllocatePoint(1l, 2);
intx y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;
cout << "y: " <K<Ky << "0 okyr K< xy << endl;
delete x;

delete y;

return EXIT_SUCCESS;

19

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Dynamically Allocated Arrays

+» To dynamically allocate an array:

= Defaultinitialize: | type* name = new type[size];

+» To dynamically deallocate an array:
= Use|delete[] name;

= |tisanincorrectto use “delete name;” onan array

- The compiler probably won’t catch this, though (!) because it can’t

always tell if name* was allocated with new type[size];
or new type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

« Result of wrong de Lete is undefined behavior

CSE 333, Winter 2026

20

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Arrays Example (primitive)

arrays.cc

\

r#'include "Point.h"

int main() {
int stack_int;
int* heap_int = new int;
int* heap_int_init = new int(12);

int stack_arr[3];
intx heap_arr = new int[3];

int* heap_arr_init_val = new int[3]();
intx heap_arr_init_1lst new int[3]{4, 5}; // C++11

delete heap_int; //
delete heap_int_init; //
delete heap_arr; //

delete[] heap_arr_init_val; //

return EXIT_SUCCESS;

21

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Arrays Example (class objects)

arrays.cc

\

[#include "Point.h"

int main() {

Point stack_pt(l, 2);
Point* heap_pt = new Point(1l, 2);

Pointx heap_pt_arr_err = new Point[2];

Point*x heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};
// C++11

delete heap_pt;
delete[] heap_pt_arr_init_lst;

return EXIT_SUCCESS;

22

WA UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

malloc vs. new

“waltoc) | nen
a function an operator or keyword

arrays, structs, objects,

Allocated memory for anything orimitives
L : :
RetUrns avoid approprlz:\te pointer type
(should be cast) (doesn’t need a cast)
When out of memory returns NULL throws an exception

free () delete ordelete[]

23

WA UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333j

What will happen when we invoke Bar ()?

" If there is an error, (Foo::Foo(int val) { Init(val); }
how would you fix it? | Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
foo_ptr_ = new 1int;
xfoo_ptr_ val;

}

A. Foo& Foo::operator=(const Foo& rhs) {
delete foo_ptr_;

B. Bad delete Init(x(rhs.foo_ptr_));
return *this;

C. Memory leak }

“ » £ void Bar() {

D. “Works” fine b 1o

E. We're lost... Foo b(20);
a = a;

}

\) 24

W UNIVERSITY of WASHINGTON

CSE 333, Winter 2026

L12: C++ Class Details, Heap

Rule of Three, Revisited

+» Now what will happen when we invoke Bar () ?

" |f thereis an error,
how would you fix it?

(Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
foo_ptr_ = new int;
*foo_ptr_ val;

}

Foo& Foo::operator=(const Foo& rhs) {
if (&rhs != this) {
delete foo_ptr_;
Init(*x(rhs.foo_ptr_));
}

return *this;

}

void Bar() {
Foo a(10);
Foo b = aj;

Wi

25

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Extra Exercise #1

« Write a C++ function that:

= Uses new to dynamically allocate an array of strings and uses
delete[] tofreeit

= Uses new to dynamically allocate an array of pointers to strings
- Assign each entry of the array to a string allocated using new

= Cleans up before exiting
- Use delete to delete each allocated string
- Usesdelete|[] to delete the string pointer array
« (whew!)

26

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

BONUS SLIDES

An extra example for practice with class design and heap-
allocated data: a C-string wrapper class classed Str.

27

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Heap Member (extra example)

» Let’s build a class to simulate some of the functionality of
the C++ string

" |Internal representation: c-string to hold characters

+» What might we want to implement in the class?

28

WA UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE 333, Winter 2026

Str Class

Str.h

(#include <iostream>
using namespace std; // should replace this

class Str {
public:
Str(); // default ctor
Str(const charx s); // c-string ctor
Str(const Str& s); // copy ctor
~Str(); // dtor

int length() const; // return length of string
charx c_str() const; // return a copy of st_
void append(const Str& s);

Str& operator=(const Str& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:
charx st_; // c-string on heap (terminated by '\0')

\}; // class Str)

29

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Str::append (extra example)

+» Complete the append () member function:
= charx strncpy(char* dst, char* src, size_t num);
" char* strncat(charx dst, charx src, size_t num);

[#include <cstring>

#include "Str.h"

// append contents of s to the end of this string
void Str::append(const Str& s) {

	Slide 1: Where are you so far on Homework 2?
	Slide 2: Systems Programming C++ Class Details, Heap
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/2)
	Slide 5: Rule of Three
	Slide 6: Dealing with the Insanity (C++11)
	Slide 7: Access Control
	Slide 8: Nonmember Functions
	Slide 9: friend Nonmember Functions
	Slide 10: When to use Nonmember and friend
	Slide 11: If we wanted to overload operator== to compare two Point objects, what type of function should it be?
	Slide 12: Namespaces
	Slide 13: Classes vs. Namespaces
	Slide 14: Complex Example Walkthrough
	Slide 15: Lecture Outline (2/2)
	Slide 16: C++11 nullptr
	Slide 17: new/delete
	Slide 18: new/delete Behavior
	Slide 19: new/delete Example
	Slide 20: Dynamically Allocated Arrays
	Slide 21: Arrays Example (primitive)
	Slide 22: Arrays Example (class objects)
	Slide 23: malloc vs. new
	Slide 24: What will happen when we invoke Bar()?
	Slide 25: Rule of Three, Revisited
	Slide 26: Extra Exercise #1
	Slide 27
	Slide 28: Heap Member (extra example)
	Slide 29: Str Class
	Slide 30: Str::append (extra example)

