WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

0 PO" EveryWheI‘e pollev.com/cse333a

Vibe Check: How are you feeling about C++
right now?

OOHOO

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

CSE 333, Winter 2026

Systems Programming

C++ Classes, Constructors, and Copies

Instructors:
Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Relevant Course Information

» Exercise 9 released today, due Monday

"= Harder than the average exercise (Rating: 4)

» Homework 2 due this coming Thursday (2/5)

" File system crawler, indexer, and search engine

» Midterm exam in just over a week (Monday, 2/9)
= Midterm review session on Friday (2/6) 4:30-6:20 PM
" Located in BAG 131 or JHN 102, depending on your quiz section
" Ed post with details forthcoming

® Practice midterms and solutions on the course website

https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/JHN_102.png

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

[]

élﬁj
s
3!

—
-<‘-U’"

structyvs. class

+ In C,a struct can only contain data fields

"= No methods and all fields are always accessible

%+ In C++, struct and class are (nearly) the same!

= Both can have methods and member visibility
(public/private/protected)

= Minor difference: members are default publicin a struct and
default private in a class

Ay

«» Common style convention:
= Use struct for simple bundles of data < ! vifzs '”l’::beﬁx“?;

= Use class for abstractions with data + functions
\ privife dodn mem bed LofTh

nomes (l“ X~ , \/"

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Memory Diagrams for Objects

+ An object is an instance of a class that maintains its state
independent from other objects
= This state is the collection of its data members

= Conceptually, an object acts like a collection of data fields (plus
class metadata)

- Layout is not specified or guaranteed, unlike structs in C

« Drawn out as variables within variables:

N\

[class Point { |
nomed instane f class Point

private: \/
int x_3; // data member £ (X,Cj Y’Cl\
int y_3 // data member P —

\}; // class Point

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Lecture Outline (1/4)

» Constructors

J/
>

«» Copy Constructors
+ Assignment
« Destructors

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

CSE 333, Winter 2026

Constructors

+» A constructor (ctor) initializes a newly-instantiated object
= A class can have multiple constructors that differ in parameters

= A constructor must be invoked when creating a new instance of
an object — which one depends on how the object is instantiated

« Written with the class name as the method name:

Point(const int x, const int y);
cf@d’EA Fero- avgum eV\'-f

. . for yon :
[|
C++ will automatlcaIIY create a syntheglzed default constructor if
you have no user-defined constructors

- Takes no arguments and calls the default ctor on all non-“plain old
data” (non-POD) member variables

- Synthesized default ctor will fail if you have non-initialized const or
reference data members

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Synthesized Default Constructor Example

7

class SimplePoint {)
public:
// no constructors declared!
int get_x() const { return x_; } // inline member function
int get_y() const { return y_; } // inline member function
double Distance(const SimplePoint& p) const;
void SetLocation(int x, int y);
private: 5 P,;mﬁiues; Jm allocate space (my.d’er,, Adka)

int x_; // data member
int y_3; // data member

\}; // class SimplePoint SimpIePoint.h)

}deﬁu& Mv'or\—> objects : default construct

[#include "SimplePoint.h" ShTwﬂePOhTtCC‘

... // definitions for Distance() and SetlLocation()

int main(int argc, char*xx argv) {

SimplePoint x; // invokes synthesized t constructor
return EXIT_SUCCESS; (M;n) x | x m 2
. | Y-D

\

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Synthesized Default Constructor

+ If you define any constructors, C++ will not add a
synthesized default constructor

" But a copy constructor and destructor can still be synthesized l

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint: :SimplePoint(const int x, const int y) {} me&) S [

X_ = X3 &/n+ke§.ze() Aéc:h:r
Y_ =Y

}

void Foo() {
SimplePoint x; // compiler error: 1if you define any

// ctors, C++ will NOT synthesize a
// default constructor for you.

SimplePoint y(1, 2); // works: 1invokes the 2-int-arguments
// constructor

]

W UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructors, and Copies

Multiple Constructors (overloading)

[#include "SimplePoint.h"

// default constructor
SimplePoint: :SimplePoint() {

y_ = 03
}

// constructor with two arguments

X_ = X;
Y_ =Y
}
void Foo() {
SimplePoint x; // i1nvokes
SimplePoint y(1, 2); // invokes
SimplePoint a[3]; // i1nvokes
ks
.

X_ = 03 j Gdded,

o now Thee is & At cor

SimplePoint::SimplePoint(const int x, const int y) {

the default constructor
the 2-int-arguments ctor
the default ctor 3 times

int - O\l_?f‘? 7

.Slmp]e Pé\\'\‘ti o8 lk@ y-@)x.@ Y‘é\ lX-@ V- @ l

CSE 333, Winter 2026

10

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Initialization Lists

+» C++ lets you optionally declare an initialization list as part
of a constructor definition
" |nitializes fields according to parameters in the list
" The following two are (nearly) identical:

rPoint::Point(const int x, const int y) {

X_ X ;

y_ Y5

std::cout << "Point constructed: (" << x_ << ",";
std::cout << y_<< ")" << std::endl;

}

. S

_—Con be eXpression S

~

r// constructor with an initialization list
Point::Point(const int x, const int y) ¢ x_(x),yy_(y) {
mﬂﬂ(wﬂ__9 std::cout << "Point constructed: (" << x_ <<(1 "

))
\nemﬁY std::cout << y_<< ") << std::endl;

11

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

;ﬂ]

Initialization vs. Construction

) —=-d
‘\v’l.

(class Point3D {
public:

// constructor with 3 int arguments k\\\\‘@sek - Dset x- C?Jj-
Poiiiiilconst int x, const int y, const int z)X y_(y), x_(x) "1&3
1O set =- T Next, constructor body is executed.
prwvagfznz 43

int x_, y_, Z_; // data members
}; // class Point3D

First, initialization list is applied.

\. J

= Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)

Data members that don’t appear in the initialization list are default
initialized/constructed before body is executed

" |nitialization preferred to assignment to avoid extra steps

- Real code should never mix the two styles

12

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Lecture Outline (2/4)

» Constructors

J/
>

« Copy Constructors
+ Assignment
« Destructors

CSE 333, Winter 2026

13

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Foo 7]
Copy Constructors 5 N S
ol 18] 4

C++ has the notion of a copy constructor (cctor)

= Used to create a new object as a copy of an existing object

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor reference o ohied of same class

Point::Point(const Point& copyme) {
X_ = copyme.x_;
copyme.y_; T

y - 6~
} S x
\o D\(;)‘.;u
void Foo() {

Point a(l, 2);” // invokes the 2-int-arguments constructor
COhSJM o w4 -me

Point b(x); // invokes the copy constructor ”‘"jj@jﬁ
// could al%p be w. 4ﬁnteﬁqgs ”Pglnt b = a;"_, th
{ } \oecwse. ‘H\c oL)QC" d() \’

ex st Prev"ou\s |y .

" |nitializer lists can also be used in copy constructors (preferred)

14

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

—

Synthesized Copy Constructor 'F-;%’fﬁi\g

+ If you don’t define your own copy constructor, C++ will
synthesize one for you

= |t will do acopy of all of the fields (i.e., member variables)

of your class (can be frdolema‘h(. with P;'f('e'f5>
= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
... // definitions for Distance() and SetlLocation()

int main(int argc, charxx argv) {
SimplePoint x;
SimplePoint y(x); // invokes synthesized copy constructor

return EXIT_SUCCESS;
}

. J

15

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

When Do Copies Happen?

+ The copy constructor is invoked if:

" You initialize an object from Point x; // default ctor

another object of the same Point y(x); // copy ctor
type: Point z = y; // copy ctor

| -
Yog pass a non-reference o1d Foo(Point) [oo 3
object as a value parameter (

// default ctor

. Point y;
to a function: // copy ctor

| Foo(y);

\
PASS—L\/‘\/QLA& 6'(' an Ao‘e_o\"
® You return a non-reference p - N
object value from a function: Boint Foo() {
T Point y; // default ctor
return y; // copy ctor

}

\. J

16

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Compiler Optimization: “Copy Elision™

Elwnéc N etdc” 7 elicion”
+» The compiler may eliminate unnecessary copies
" You might not see a constructor get invoked when you expect it
+» Most common is when an object is returned by value

(i.e., copied) and passed into another copy constructor
= Since C++17, this kind of copy elision is guaranteed

(Point Foo() { h
Point y; // default ctor
return vy; // copy ctor? optimized?
-’;a'lw\ }
x(:]ir;jzi int main(int argc, char*x argv) {
—— Point x(1, 2); // two-ints-argument ctor
YL&£2_¥J§J Point y = x; // copy ctor
Point z = o(); // copy ctor? optimized?
o] y-To)
z& G Y 2\ \ } Po'“+ z (FOOS @1\.“Vﬁ|(n\’)

—~Xtor

 Foo Mo
k yl X~ ljo V-@‘U\ @ y- @j

(unnmed)

17

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Lecture Outline (3/4)

» Constructors

J/
>

« Copy Constructors
+» Assignment
« Destructors

CSE 333, Winter 2026

18

W UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructors, and Copies

Assignment != Construction

“="is the assignment operator

= Assigns values to an existing, already constructed object

(Point W
Point x(1, 2);
Point y(x);

>Point z

v exists —‘(Y

2z 870 not exist—

default ctor
two-i1nts—-argument ctor
copy ctor

copy ctor

assignment operator

method opecaor =C)

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

]

élﬁj
=
m

—
"\v’n

Overloading the “=" Operator

J—
-0 y-0 (

“u_n

+ You can choose to define the “=" operator q('——’

" But there are some rules you should follow: 4.

Lm—

Point@)Point::operator:(const Point& rhs) {

if (thisN\ld=_&rhs) { // (1) always check against this

= . mmore important Lhan dealing Wit
X rhs. X-> A\‘r\c\w‘g\\ |\/ allocated \v\emcvys
y_ = rhs.y_;

}

return ;

// (2) always return *this from op=

1 ~— relurns rederence to dass object ((allowsTfor (,\«odnih“j)
Point a; // default constructor
La = b = c; // works because = return *this

a = (b =2c); // equiv. to above (= i1s right-associative)
(a = b) = c; // "works'" because = returns a non-const

> Q. OP€F0+0(= (b. operod’o(= (c))

20

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Synthesized Assighment Operator

+ If you don’t define the assignment operator, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e., member variables)
of your class
= Sometimes the right thing; sometimes the wrong thing
Wsually wrong whenever class owns & resource (es., dynamilly allocated dato)
[#include "SimplePoint.h"

... // definitions for Distance() and SetlLocation()

int main(int argc, charxx argv) {
SimplePoint x;
SimplePoint y(x);
y = X; // invokes synthesized assignment operator
return EXIT_SUCCESS;

21

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Lecture Outline (4/4)

J/
’0

Constructors
« Copy Constructors
+ Assignment
« Destructors

CSE 333, Winter 2026

22

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Destructors

% C++ has the notion of a destructor (dtor)

" |nvoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

Place to put your cleanup code — free any dynamic storage or
other resources owned by the object

= Standard C++ idiom for managing dynamic resources
- Slogan: “Resource Acquisition Is Initialization” (RAIl)

= After destructor body finishes, destruct members in reverse order

...of declaration (i.e., reverse of initialization list)
‘MAG —\ [“\r\o g)(xm»\dt()
(Point::iPoint() { // destructor
// Do any cleanup needed when a Point object goes away.
// Nothing to do here, but what if we had dynamic resources?

}
J

exected in reese order a5 ctor: @ body & ddor
@ destnd” mewbers in reverse order & Aec\afor\' on

\.

23

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Destructor Example

(class FileDescriptor {
public:
FileDescriptor(charx file) { // Constructor
fd_ = open(file, O_RDONLY); £
// Error checking omitted/dh" aufo matially closes tle
} Y

for the q;cr,’

~FileDescriptor() { close(fd_); } // Destructor
int get_fd() const { return fd_; } // inline member function
private:

int fd_; // data member

}; // class FileDescriptor

FileDescriptor.h
_ J

#include "FileDescriptor.h"

int main(int argc, char*x argv) {
FileDescriptor fd("foo.txt");

return EXIT_SUCCESS: _destrud shject uhen @ fulls ot of s
} - ’ (he,e, Lhen e retury) e

24

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

+» How many times does the destructor get invoked?
= Assume Point with everything defined (ctor, cctor, =, dtor)

= Assume no compiler optimizations
test.cc

~

[Point PrintRad(Point& pt) {
Point origin(0, 0);
double r = origin.Distance(pt);
double theta = atan2(pt.get_y(), pt.get_x());

cout << "r = " K< r << endl;
cout << "theta = " << theta << " rad" << endl;
A. return pt;

}

B. 2 int main(int argc, charxx argv) {
| Point pt(3, 4);
F—Ei’?;——\\ PrintRad (pt) ;
4. return EXIT_SUCCESS;
L g
E. We're lost...

25

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

\b‘&

Class Definition (from last lecture)

Point.h
(#'i fndef POINT_H_ Hais Const means that Hhis Tanction is nat 6 lloned T dhange R
#define POINT_H_ ohject on which T is ¢”ﬂ*(ﬁelmﬁa+ s psiter)

“é\“
class Point { PR
public:
Point(int x, int y), &//?/ constructor
{A,1nt get_x() const™{ return x_; }'% // inline member function
int get_y() const { return y_; // inline member function
Q:?double Distance(const Point& p) “const; // member function

}; // class Point noming converton for clasy Aot merbecy
(GO@&IQ (++ 5+y|'e 5uu}e

he

>void SetLocation(int x, 1int y); // member function

. ComPiLf‘r moLy Choose o E:\(f.and
pr-lvate: ’\\W\Q (\1&: & th(ro) lﬂfl'eclé Dn A\
int x_; // data member actual funcdon all
int y_3 ta member

#tendif // POINT_H_
\,

26

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Polling Solution

CSE 333, Winter 2026

+» How many times does the destructor get invoked?

ctor op= dtor
2. O >
test.cc
[Point PrintRad(Point& pt) { 1
Point origin(0, 0); /' © clor cled
double r = origin.Distance(pt); // Distinte tukss e
double theta = atan2(pt.get_y(), pt.get_x());
cout << "r = " K< r << endl;
cout << "theta = " << theta << " rad" << endl;
return pt; //C) PadRod rehuns an olged, so 3 (aled 1o

} /Q while C\emmr:ﬁ bsr) orsir\ S@

int main(int argc, char*x argv) {
Point pt(3, 4); //C) clor called
PrintRad (pt) ; /Pt Rod dukes ref, so pt is WO copredt

L} / D Wnle drec\mng wp, P’") Aeft

return EXIT SUCCESS; /®rehn wle & PidRod ipored; -

—

"o

Mot ‘('
@%hﬁ?*l;gﬁil ,Ezfl
Ostnee) p ~
tmm&a :;2§i
\

owg‘f\

l Drskonce

() o\é eg NoT

co‘oiet\

crede & Temp

27

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Preview for Next Lecture

(class FileDescriptor {

public:

FileDescriptor(charx file) { // Constructor
fd_ = open(file, O_RDONLY);
// Error checking omitted

}

~FileDescriptor() { close(fd_); } // Destructor

int get_fd() const { return fd_; } // inline member function

private:

int fd_; // data member

}; // class FileDescriptor

FileDescriptor.h
_ J

[#include "FileDescriptor.h"

int.main(int argc, charx* argv) { st copies Adtn mombers (£a_)
FileDescriptor fdl(foo.?z}lj,,//
FileDescriptor fd2(fd) ;< // Invokes synthesized cctor

return EXIT_SUCCESS; + What happeus whew we return
} oand destruct our objects?

(This won't crash the program, but what if we were using heap allocation instead of file descriptors?))8

W UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructors, and Copies

Extra Exercise #1

+ Write a C++ program that:

" Has a class representing a 3-dimensional point
" Has the following methods:

- Return the inner product of two 3D points

- Return the distance between two 3D points

- Accessors and mutators for the X, y, and z coordinates

CSE 333, Winter 2026

29

W UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructors, and Copies

CSE 333, Winter 2026

Extra Exercise #2

+ Write a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

"= Has the following methods:

« Test if one box is inside another box
« Return the volume of a box

- Handles <<, =, and a copy constructor
- Uses const in all the right places

30

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Extra Exercise #3

+» Modify your Point3D class from Extra Exercise #1
= Disable the copy constructor and assignment operator

= Attempt to use copy & assignment in code and see what error the
compiler generates

" Write a CopyFrom() member function and try using it instead
- (See details about CopyFrom() in next lecture)

31

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Extra Exercise #4

+ Write a C++ class that:
= |s given the name of a file as a constructor argument

" Hasa GetNextWord () method that returns the next
whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

" Has a destructor that cleans up anything that needs cleaning up

32

	Slide 1: Vibe Check: How are you feeling about C++ right now?
	Slide 2: Systems Programming C++ Classes, Constructors, and Copies
	Slide 3: Relevant Course Information
	Slide 4: struct vs. class
	Slide 5: Memory Diagrams for Objects
	Slide 6: Lecture Outline (1/4)
	Slide 7: Constructors
	Slide 8: Synthesized Default Constructor Example
	Slide 9: Synthesized Default Constructor
	Slide 10: Multiple Constructors (overloading)
	Slide 11: Initialization Lists
	Slide 12: Initialization vs. Construction
	Slide 13: Lecture Outline (2/4)
	Slide 14: Copy Constructors
	Slide 15: Synthesized Copy Constructor
	Slide 16: When Do Copies Happen?
	Slide 17: Compiler Optimization: “Copy Elision”
	Slide 18: Lecture Outline (3/4)
	Slide 19: Assignment != Construction
	Slide 20: Overloading the “=” Operator
	Slide 21: Synthesized Assignment Operator
	Slide 22: Lecture Outline (4/4)
	Slide 23: Destructors
	Slide 24: Destructor Example
	Slide 25
	Slide 26: Class Definition (from last lecture)
	Slide 27: Polling Solution
	Slide 28: Preview for Next Lecture
	Slide 29: Extra Exercise #1
	Slide 30: Extra Exercise #2
	Slide 31: Extra Exercise #3
	Slide 32: Extra Exercise #4

