
CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

1

Vibe Check: How are you feeling about C++
right now?

pollev.com/cse333a

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Systems Programming
C++ Classes, Constructors, and Copies

Instructors:

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Relevant Course Information

❖ Exercise 9 released today, due Monday

▪ Harder than the average exercise (Rating: 4)

❖ Homework 2 due this coming Thursday (2/5)

▪ File system crawler, indexer, and search engine

❖ Midterm exam in just over a week (Monday, 2/9)

▪ Midterm review session on Friday (2/6) 4:30-6:20 PM

▪ Located in BAG 131 or JHN 102, depending on your quiz section

▪ Ed post with details forthcoming

▪ Practice midterms and solutions on the course website

3

https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/JHN_102.png

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

struct vs. class

❖ In C, a struct can only contain data fields

▪ No methods and all fields are always accessible

❖ In C++, struct and class are (nearly) the same!

▪ Both can have methods and member visibility
(public/private/protected)

▪ Minor difference: members are default public in a struct and
default private in a class

❖ Common style convention:

▪ Use struct for simple bundles of data

▪ Use class for abstractions with data + functions

4

STYLE
TIP

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Memory Diagrams for Objects

❖ An object is an instance of a class that maintains its state
independent from other objects

▪ This state is the collection of its data members

▪ Conceptually, an object acts like a collection of data fields (plus
class metadata)

• Layout is not specified or guaranteed, unlike structs in C

❖ Drawn out as variables within variables:

5

class Point {
 ...

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Lecture Outline (1/4)

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

6

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

▪ A constructor must be invoked when creating a new instance of
an object – which one depends on how the object is instantiated

❖ Written with the class name as the method name:

▪ C++ will automatically create a synthesized default constructor if
you have no user-defined constructors

• Takes no arguments and calls the default ctor on all non-“plain old
data” (non-POD) member variables

• Synthesized default ctor will fail if you have non-initialized const or
reference data members

7

Point(const int x, const int y);

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Synthesized Default Constructor Example

8

class SimplePoint {
 public:
 // no constructors declared!
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const SimplePoint& p) const;
 void SetLocation(int x, int y);

 private:
 int x_; // data member
 int y_; // data member
}; // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x; // invokes synthesized default constructor
 return EXIT_SUCCESS;
}

SimplePoint.cc

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Synthesized Default Constructor

❖ If you define any constructors, C++ will not add a
synthesized default constructor

▪ But a copy constructor and destructor can still be synthesized

9

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void Foo() {
 SimplePoint x; // compiler error: if you define any
 // ctors, C++ will NOT synthesize a
 // default constructor for you.

 SimplePoint y(1, 2); // works: invokes the 2-int-arguments
 // constructor
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Multiple Constructors (overloading)

10

#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint() {
 x_ = 0;
 y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void Foo() {
 SimplePoint x; // invokes the default constructor
 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor
 SimplePoint a[3]; // invokes the default ctor 3 times
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Initialization Lists

❖ C++ lets you optionally declare an initialization list as part
of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

11

// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Point::Point(const int x, const int y) {
 x_ = x;
 y_ = y;
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Initialization vs. Construction

▪ Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)

• Data members that don’t appear in the initialization list are default
initialized/constructed before body is executed

▪ Initialization preferred to assignment to avoid extra steps

• Real code should never mix the two styles

12

class Point3D {
 public:
 // constructor with 3 int arguments
 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
 z_ = z;
 }

 private:
 int x_, y_, z_; // data members
}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

STYLE
TIP

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Lecture Outline (2/4)

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

13

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object

14

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
 x_ = copyme.x_;
 y_ = copyme.y_;
}

void Foo() {
 Point a(1, 2); // invokes the 2-int-arguments constructor

 Point b(x); // invokes the copy constructor
 // could also be written as "Point b = a;"
}

▪ Initializer lists can also be used in copy constructors (preferred)

STYLE
TIP

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e., member variables)
of your class

▪ Sometimes the right thing; sometimes the wrong thing

15

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x); // invokes synthesized copy constructor
 ...
 return EXIT_SUCCESS;
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from
another object of the same
type:

▪ You pass a non-reference
object as a value parameter
to a function:

▪ You return a non-reference
object value from a function:

16

void Foo(Point x) { ... }

Point y; // default ctor
Foo(y); // copy ctor

Point x; // default ctor
Point y(x); // copy ctor
Point z = y; // copy ctor

Point Foo() {
 Point y; // default ctor
 return y; // copy ctor
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Compiler Optimization: “Copy Elision”

❖ The compiler may eliminate unnecessary copies

▪ You might not see a constructor get invoked when you expect it

❖ Most common is when an object is returned by value
(i.e., copied) and passed into another copy constructor

▪ Since C++17, this kind of copy elision is guaranteed

17

Point Foo() {
 Point y; // default ctor
 return y; // copy ctor? optimized?
}

int main(int argc, char** argv) {
 Point x(1, 2); // two-ints-argument ctor
 Point y = x; // copy ctor
 Point z = Foo(); // copy ctor? optimized?
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Lecture Outline (3/4)

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

18

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Assignment != Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

19

Point w; // default ctor
Point x(1, 2); // two-ints-argument ctor
Point y(x); // copy ctor
Point z = w; // copy ctor
y = x; // assignment operator

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

20

Point& Point::operator=(const Point& rhs) {
 if (this != &rhs) { // (1) always check against this
 x_ = rhs.x_;
 y_ = rhs.y_;
 }
 return *this; // (2) always return *this from op=
}

Point a; // default constructor
a = b = c; // works because = return *this
a = (b = c); // equiv. to above (= is right-associative)
(a = b) = c; // "works" because = returns a non-const

STYLE
TIP

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e., member variables)
of your class

▪ Sometimes the right thing; sometimes the wrong thing

21

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x);
 y = x; // invokes synthesized assignment operator
 return EXIT_SUCCESS;
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Lecture Outline (4/4)

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

22

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or
other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

▪ After destructor body finishes, destruct members in reverse order
of declaration (i.e., reverse of initialization list)

23

Point::~Point() { // destructor
 // Do any cleanup needed when a Point object goes away.
 // Nothing to do here, but what if we had dynamic resources?
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Destructor Example

24

class FileDescriptor {
 public:
 FileDescriptor(char* file) { // Constructor
 fd_ = open(file, O_RDONLY);
 // Error checking omitted
 }
 ~FileDescriptor() { close(fd_); } // Destructor
 int get_fd() const { return fd_; } // inline member function
 private:
 int fd_; // data member
}; // class FileDescriptor

FileDescriptor.h

#include "FileDescriptor.h"

int main(int argc, char** argv) {
 FileDescriptor fd("foo.txt");
 return EXIT_SUCCESS;
}

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

❖ How many times does the destructor get invoked?

▪ Assume Point with everything defined (ctor, cctor, =, dtor)

▪ Assume no compiler optimizations

A. 1

B. 2

C. 3

D. 4

E. We’re lost…
25

Point PrintRad(Point& pt) {
 Point origin(0, 0);
 double r = origin.Distance(pt);
 double theta = atan2(pt.get_y(), pt.get_x());
 cout << "r = " << r << endl;
 cout << "theta = " << theta << " rad" << endl;
 return pt;
}

int main(int argc, char** argv) {
 Point pt(3, 4);
 PrintRad(pt);
 return EXIT_SUCCESS;
}

test.cc

pollev.com/cse333a

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Class Definition (from last lecture)

26

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(int x, int y); // constructor
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const Point& p) const; // member function
 void SetLocation(int x, int y); // member function

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

#endif // POINT_H_

Point.h

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Polling Solution

❖ How many times does the destructor get invoked?

27

ctor cctor op= dtor

Point PrintRad(Point& pt) {
 Point origin(0, 0);
 double r = origin.Distance(pt);
 double theta = atan2(pt.get_y(), pt.get_x());
 cout << "r = " << r << endl;
 cout << "theta = " << theta << " rad" << endl;
 return pt;
}

int main(int argc, char** argv) {
 Point pt(3, 4);
 PrintRad(pt);
 return EXIT_SUCCESS;
}

test.cc

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Preview for Next Lecture

28

class FileDescriptor {
 public:
 FileDescriptor(char* file) { // Constructor
 fd_ = open(file, O_RDONLY);
 // Error checking omitted
 }
 ~FileDescriptor() { close(fd_); } // Destructor
 int get_fd() const { return fd_; } // inline member function
 private:
 int fd_; // data member
}; // class FileDescriptor

#include "FileDescriptor.h"

int main(int argc, char** argv) {
 FileDescriptor fd1(foo.txt);
 FileDescriptor fd2(fd); // Invokes synthesized cctor
 return EXIT_SUCCESS;
}

What happens when we return

and destruct our objects?

(This won’t crash the program, but what if we were using heap allocation instead of file descriptors?)

FileDescriptor.h

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates

29

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places

30

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Extra Exercise #3

❖ Modify your Point3D class from Extra Exercise #1

▪ Disable the copy constructor and assignment operator

▪ Attempt to use copy & assignment in code and see what error the
compiler generates

▪ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)

31

CSE 333, Winter 2026L11: C++ Classes, Constructors, and Copies

Extra Exercise #4

❖ Write a C++ class that:

▪ Is given the name of a file as a constructor argument

▪ Has a GetNextWord() method that returns the next
whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

▪ Has a destructor that cleans up anything that needs cleaning up

32

	Slide 1: Vibe Check: How are you feeling about C++ right now?
	Slide 2: Systems Programming C++ Classes, Constructors, and Copies
	Slide 3: Relevant Course Information
	Slide 4: struct vs. class
	Slide 5: Memory Diagrams for Objects
	Slide 6: Lecture Outline (1/4)
	Slide 7: Constructors
	Slide 8: Synthesized Default Constructor Example
	Slide 9: Synthesized Default Constructor
	Slide 10: Multiple Constructors (overloading)
	Slide 11: Initialization Lists
	Slide 12: Initialization vs. Construction
	Slide 13: Lecture Outline (2/4)
	Slide 14: Copy Constructors
	Slide 15: Synthesized Copy Constructor
	Slide 16: When Do Copies Happen?
	Slide 17: Compiler Optimization: “Copy Elision”
	Slide 18: Lecture Outline (3/4)
	Slide 19: Assignment != Construction
	Slide 20: Overloading the “=” Operator
	Slide 21: Synthesized Assignment Operator
	Slide 22: Lecture Outline (4/4)
	Slide 23: Destructors
	Slide 24: Destructor Example
	Slide 25
	Slide 26: Class Definition (from last lecture)
	Slide 27: Polling Solution
	Slide 28: Preview for Next Lecture
	Slide 29: Extra Exercise #1
	Slide 30: Extra Exercise #2
	Slide 31: Extra Exercise #3
	Slide 32: Extra Exercise #4

