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Relevant Course Information

❖ Exercise 9 released today, due Monday

▪ Harder than the average exercise (Rating: 4)

❖ Homework 2 due this coming Thursday (2/5)

▪ File system crawler, indexer, and search engine

❖ Midterm exam in just over a week (Monday, 2/9)

▪ Midterm review session on Friday (2/6) 4:30-6:20 PM

▪ Located in BAG 131 or JHN 102, depending on your quiz section

▪ Ed post with details forthcoming

▪ Practice midterms and solutions on the course website
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https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/JHN_102.png
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struct vs. class

❖ In C, a struct can only contain data fields

▪ No methods and all fields are always accessible

❖ In C++, struct and class are (nearly) the same!

▪ Both can have methods and member visibility 
(public/private/protected)

▪ Minor difference: members are default public in a struct and 
default private in a class

❖ Common style convention:

▪ Use struct for simple bundles of data

▪ Use class for abstractions with data + functions
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STYLE
TIP
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Memory Diagrams for Objects

❖ An object is an instance of a class that maintains its state 
independent from other objects

▪ This state is the collection of its data members

▪ Conceptually, an object acts like a collection of data fields (plus 
class metadata)

• Layout is not specified or guaranteed, unlike structs in C

❖ Drawn out as variables within variables:
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class Point {
 ...

 private:
  int x_;  // data member
  int y_;  // data member
};  // class Point
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Lecture Outline (1/4)

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors
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Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

▪ A constructor must be invoked when creating a new instance of 
an object – which one depends on how the object is instantiated

❖ Written with the class name as the method name:

▪ C++ will automatically create a synthesized default constructor if 
you have no user-defined constructors

• Takes no arguments and calls the default ctor on all non-“plain old 
data” (non-POD) member variables

• Synthesized default ctor will fail if you have non-initialized const or 
reference data members
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Point(const int x, const int y);
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Synthesized Default Constructor Example
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class SimplePoint {
 public:
  // no constructors declared!
  int get_x() const { return x_; }     // inline member function
  int get_y() const { return y_; }     // inline member function
  double Distance(const SimplePoint& p) const;
  void SetLocation(int x, int y);

 private:
  int x_;  // data member
  int y_;  // data member
};  // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
  SimplePoint x;  // invokes synthesized default constructor
  return EXIT_SUCCESS;
}

SimplePoint.cc
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Synthesized Default Constructor

❖ If you define any constructors, C++ will not add a 
synthesized default constructor

▪ But a copy constructor and destructor can still be synthesized
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#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
  x_ = x;
  y_ = y;
} 

void Foo() {
  SimplePoint x;        // compiler error:  if you define any 
                        // ctors, C++ will NOT synthesize a 
                        // default constructor for you.

  SimplePoint y(1, 2);  // works:  invokes the 2-int-arguments
                        // constructor
}
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Multiple Constructors (overloading)
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#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint() {
  x_ = 0;
  y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
  x_ = x;
  y_ = y;
} 

void Foo() {
  SimplePoint x;        // invokes the default constructor
  SimplePoint y(1, 2);  // invokes the 2-int-arguments ctor
  SimplePoint a[3];     // invokes the default ctor 3 times
}
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Initialization Lists

❖ C++ lets you optionally declare an initialization list as part 
of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:
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// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
  std::cout << "Point constructed: (" << x_ << ",";
  std::cout << y_<< ")" << std::endl;
}

Point::Point(const int x, const int y) {
  x_ = x;
  y_ = y;
  std::cout << "Point constructed: (" << x_ << ",";
  std::cout << y_<< ")" << std::endl;
}
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Initialization vs. Construction

▪ Data members in initializer list are initialized in the order they are 
defined in the class, not by the initialization list ordering (!)

• Data members that don’t appear in the initialization list are default 
initialized/constructed before body is executed

▪ Initialization preferred to assignment to avoid extra steps

• Real code should never mix the two styles
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class Point3D {
 public:
  // constructor with 3 int arguments
  Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
    z_ = z;
  }

 private:
  int x_, y_, z_;  // data members
};  // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

STYLE
TIP
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Lecture Outline (2/4)

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors
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Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object
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Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
  x_ = copyme.x_;
  y_ = copyme.y_;
}

void Foo() {
  Point a(1, 2);  // invokes the 2-int-arguments constructor

  Point b(x);     // invokes the copy constructor
                  // could also be written as "Point b = a;"
}

▪ Initializer lists can also be used in copy constructors (preferred)

STYLE
TIP
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Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will 
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e., member variables) 
of your class

▪ Sometimes the right thing; sometimes the wrong thing
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#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
  SimplePoint x;
  SimplePoint y(x);  // invokes synthesized copy constructor
  ...
  return EXIT_SUCCESS;
}
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When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from 
another object of the same 
type:

▪ You pass a non-reference 
object as a value parameter 
to a function:

▪ You return a non-reference
object value from a function:
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void Foo(Point x) { ... }

Point y;      // default ctor
Foo(y);       // copy ctor

Point x;      // default ctor
Point y(x);   // copy ctor
Point z = y;  // copy ctor

Point Foo() {
  Point y;    // default ctor
  return y;   // copy ctor
}
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Compiler Optimization: “Copy Elision”

❖ The compiler may eliminate unnecessary copies

▪ You might not see a constructor get invoked when you expect it

❖ Most common is when an object is returned by value 
(i.e., copied) and passed into another copy constructor

▪ Since C++17, this kind of copy elision is guaranteed
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Point Foo() {
  Point y;        // default ctor
  return y;       // copy ctor? optimized?
}

int main(int argc, char** argv) {
  Point x(1, 2);    // two-ints-argument ctor
  Point y = x;      // copy ctor
  Point z = Foo();  // copy ctor? optimized?
}
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Lecture Outline (3/4)

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors
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Assignment != Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object
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Point w;        // default ctor
Point x(1, 2);  // two-ints-argument ctor
Point y(x);     // copy ctor 
Point z = w;    // copy ctor
y = x;          // assignment operator
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Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:
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Point& Point::operator=(const Point& rhs) {
  if (this != &rhs) {  // (1) always check against this
    x_ = rhs.x_;
    y_ = rhs.y_;
  }
  return *this;        // (2) always return *this from op=
}

Point a;       // default constructor
a = b = c;     // works because = return *this
a = (b = c);   // equiv. to above (= is right-associative)
(a = b) = c;   // "works" because = returns a non-const

STYLE
TIP
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Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will 
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e., member variables) 
of your class

▪ Sometimes the right thing; sometimes the wrong thing
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#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
  SimplePoint x;
  SimplePoint y(x);
  y = x;          // invokes synthesized assignment operator
  return EXIT_SUCCESS;
}
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Lecture Outline (4/4)

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors
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Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out 
of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or 
other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

▪ After destructor body finishes, destruct members in reverse order 
of declaration (i.e., reverse of initialization list)
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Point::~Point() {   // destructor
  // Do any cleanup needed when a Point object goes away.
  // Nothing to do here, but what if we had dynamic resources?
}
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Destructor Example
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class FileDescriptor {
 public:
  FileDescriptor(char* file) {   // Constructor
    fd_ = open(file, O_RDONLY);
    // Error checking omitted
  }
  ~FileDescriptor() { close(fd_); }   // Destructor
  int get_fd() const { return fd_; }   // inline member function
 private:
  int fd_;  // data member
};  // class FileDescriptor

FileDescriptor.h

#include "FileDescriptor.h"

int main(int argc, char** argv) {
  FileDescriptor fd("foo.txt");
  return EXIT_SUCCESS;
}
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❖ How many times does the destructor get invoked?

▪ Assume Point with everything defined (ctor, cctor, =, dtor)

▪ Assume no compiler optimizations 

A. 1

B. 2

C. 3

D. 4

E. We’re lost…
25

Point PrintRad(Point& pt) {
  Point origin(0, 0);
  double r = origin.Distance(pt);
  double theta = atan2(pt.get_y(), pt.get_x());
  cout << "r = " << r << endl;
  cout << "theta = " << theta << " rad" << endl;
  return pt;
}

int main(int argc, char** argv) {
  Point pt(3, 4);
  PrintRad(pt);
  return EXIT_SUCCESS;
}

test.cc

pollev.com/cse333a
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Class Definition (from last lecture)
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#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
  Point(int x, int y);                 // constructor
  int get_x() const { return x_; }     // inline member function
  int get_y() const { return y_; }     // inline member function
  double Distance(const Point& p) const;      // member function
  void SetLocation(int x, int y);             // member function

 private:
  int x_;  // data member
  int y_;  // data member
};  // class Point

#endif  // POINT_H_

Point.h
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Polling Solution

❖ How many times does the destructor get invoked?
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ctor cctor op= dtor

Point PrintRad(Point& pt) {
  Point origin(0, 0);
  double r = origin.Distance(pt);
  double theta = atan2(pt.get_y(), pt.get_x());
  cout << "r = " << r << endl;
  cout << "theta = " << theta << " rad" << endl;
  return pt;
}

int main(int argc, char** argv) {
  Point pt(3, 4);
  PrintRad(pt);
  return EXIT_SUCCESS;
}

test.cc
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Preview for Next Lecture
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class FileDescriptor {
 public:
  FileDescriptor(char* file) {   // Constructor
    fd_ = open(file, O_RDONLY);
    // Error checking omitted
  }
  ~FileDescriptor() { close(fd_); }   // Destructor
  int get_fd() const { return fd_; }   // inline member function
 private:
  int fd_;  // data member
};  // class FileDescriptor

#include "FileDescriptor.h"

int main(int argc, char** argv) {
  FileDescriptor fd1(foo.txt);
  FileDescriptor fd2(fd); // Invokes synthesized cctor
  return EXIT_SUCCESS;
}

What happens when we return 

and destruct our objects?

(This won’t crash the program, but what if we were using heap allocation instead of file descriptors?)

FileDescriptor.h
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Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates
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Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the 
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the 
axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places
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Extra Exercise #3

❖ Modify your Point3D class from Extra Exercise #1

▪ Disable the copy constructor and assignment operator

▪ Attempt to use copy & assignment in code and see what error the 
compiler generates

▪ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)
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Extra Exercise #4

❖ Write a C++ class that:

▪ Is given the name of a file as a constructor argument

▪ Has a GetNextWord() method that returns the next 
whitespace- or newline-separated word from the file as a copy of 
a string object, or an empty string once you hit EOF

▪ Has a destructor that cleans up anything that needs cleaning up

32
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