WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

0 PO" EveryWheI‘e pollev.com/cse333a

Vibe Check: How are you feeling about C++
right now?

OOHOO

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

CSE 333, Winter 2026

Systems Programming

C++ Classes, Constructors, and Copies

Instructors:
Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Relevant Course Information

» Exercise 9 released today, due Monday

"= Harder than the average exercise (Rating: 4)

» Homework 2 due this coming Thursday (2/5)

" File system crawler, indexer, and search engine

» Midterm exam in just over a week (Monday, 2/9)
= Midterm review session on Friday (2/6) 4:30-6:20 PM
" Located in BAG 131 or JHN 102, depending on your quiz section
" Ed post with details forthcoming

® Practice midterms and solutions on the course website

https://courses.cs.washington.edu/courses/cse333/26wi/exams/BAG_131.png
https://courses.cs.washington.edu/courses/cse333/26wi/exams/JHN_102.png

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

[]

(V5]
~
=
m

structyvs. class

=

-<‘-U’

+ In C,a struct can only contain data fields

"= No methods and all fields are always accessible

%+ In C++, struct and class are (nearly) the same!
= Both can have methods and member visibility
(public/private/protected)

= Minor difference: members are default publicin a struct and
default private in a class

+» Common style convention:
= Use struct for simple bundles of data
= Use class for abstractions with data + functions

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Memory Diagrams for Objects

+ An object is an instance of a class that maintains its state
independent from other objects
= This state is the collection of its data members

= Conceptually, an object acts like a collection of data fields (plus
class metadata)

- Layout is not specified or guaranteed, unlike structs in C

« Drawn out as variables within variables:

N\

[class Point {

private:

int x_3; // data member

int y_3 // data member
\}; // class Point

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Lecture Outline (1/4)

» Constructors

J/
>

«» Copy Constructors
+ Assignment
« Destructors

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

CSE 333, Winter 2026

Constructors

+» A constructor (ctor) initializes a newly-instantiated object
= A class can have multiple constructors that differ in parameters

= A constructor must be invoked when creating a new instance of
an object — which one depends on how the object is instantiated

« Written with the class name as the method name:
Point(const int x, const int y);

= C++ will automatically create a synthesized default constructor if
you have no user-defined constructors

- Takes no arguments and calls the default ctor on all non-“plain old
data” (non-POD) member variables

- Synthesized default ctor will fail if you have non-initialized const or
reference data members

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

CSE 333, Winter 2026

Synthesized Default Constructor Example

(class SimplePoint {)
public:
// no constructors declared!
int get_x() const { return x_; } // inline member function
int get_y() const { return y_; } // inline member function

double Distance(const SimplePoint& p) const;
void SetLocation(int x, int y);

private:

int x_; // data member
int y_3; // data member

\}; // class SimplePoint SimpIePoint.h)

[#include "SimplePoint.h" thwﬂePohthcw

... // definitions for Distance() and SetlLocation()

int main(int argc, char*xx argv) {

SimplePoint x; // invokes synthesized default constructor
return EXIT_SUCCESS;

}

\

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Synthesized Default Constructor

+ If you define any constructors, C++ will not add a
synthesized default constructor

" But a copy constructor and destructor can still be synthesized

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
X5

Y

y_
}

void Foo() {
SimplePoint x; // compiler error: 1if you define any
// ctors, C++ will NOT synthesize a
// default constructor for you.

SimplePoint y(1, 2); // works: 1invokes the 2-int-arguments
// constructor

]

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Multiple Constructors (overloading)

[#include "SimplePoint.h"

// default constructor
SimplePoint: :SimplePoint() {
X_ = 03
y_ = 03
}

// constructor with two arguments
SimplePoint: :SimplePoint(const int

X_ = X;
Y_ =Y

}

void Foo() {
SimplePoint x; // i1nvokes
SimplePoint y(1, 2); // invokes
SimplePoint a[3]; // i1nvokes

L}

X, const int y) {

the default constructor
the 2-int-arguments ctor
the default ctor 3 times

10

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Initialization Lists

+» C++ lets you optionally declare an initialization list as part
of a constructor definition
" |nitializes fields according to parameters in the list
" The following two are (nearly) identical:

rPoint::Point(const int x, const int y) {

X_ X ;

y_ Y5

std::cout << "Point constructed: (" << x_ << ",";
std::cout << y_<< ")" << std::endl;

// constructor with an initialization list

Point::Point(const int x, const int y) ¢ x_(x), y_(y) {
std::cout << "Point constructed: (" << x_ << ",";
std::cout << y_<< ") << std::endl;

L} S

11

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

]
[) [) [] [J L S.F'Y.LE
Initialization vs. Construction I
\4
(class Point3D { Fi initialization list i lied)
public: Irst, Iinitialization list Is applied.
// constructor with 3 int arguments “\\\\‘
Poiiiiilconst int x, const int y, const int ZXZZ:g;(y), x;zzz:{
¥ \ Next, constructor body is executed.
private:
int x_, y_, z_; // data members
\}; // class Point3D)

= Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)

- Data members that don’t appear in the initialization list are default
initialized/constructed before body is executed

" |nitialization preferred to assignment to avoid extra steps

- Real code should never mix the two styles

12

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Lecture Outline (2/4)

» Constructors

J/
>

« Copy Constructors
+ Assignment
« Destructors

CSE 333, Winter 2026

13

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

]

élﬁj
=
3!

—
"\v’n

Copy Constructors

% C++ has the notion of a copy constructor (cctor)

= Used to create a new object as a copy of an existing object

rPoint::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
copyme.x_;

copyme.y_;

y_
}

void Foo() {
Point a(l, 2); // invokes the 2-int-arguments constructor

Point b(x); // invokes the copy constructor
// could also be written as "Point b = a;"

" |nitializer lists can also be used in copy constructors (preferred)

14

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Synthesized Copy Constructor

+ If you don’t define your own copy constructor, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e., member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
... // definitions for Distance() and SetlLocation()

int main(int argc, charxx argv) {
SimplePoint x;
SimplePoint y(x); // invokes synthesized copy constructor

return EXIT_SUCCESS;
}

. J

15

W UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructors, and Copies

When Do Copies Happen?

+ The copy constructor is invoked if:

" You initialize an object from
another object of the same

type:

" You pass a non-reference
object as a value parameter
to a function:

" You return a non-reference

object value from a function:

CSE 333, Winter 2026

Point x;
Point y(x);
Point z = vy;

// default ctor

// copy ctor
// copy ctor

Point y;

| Foo(y);

[void Foo(Point x) { ... }

// default ctor
// copy ctor

[Point Foo() {
Point y;
return y;

}

\.

// default ctor
// copy ctor

16

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Compiler Optimization: “Copy Elision”

+» The compiler may eliminate unnecessary copies

" You might not see a constructor get invoked when you expect it

+» Most common is when an object is returned by value
(i.e., copied) and passed into another copy constructor
= Since C++17, this kind of copy elision is guaranteed

(Point Foo() {
Point y; // default ctor
return y; // copy ctor? optimized?
}
int main(int argc, char*x argv) {
Point x(1, 2); // two-ints-argument ctor
Point y = x; // copy ctor
Point z = Foo(); // copy ctor? optimized?
\} y,

17

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Lecture Outline (3/4)

» Constructors

J/
>

« Copy Constructors
+» Assignment
« Destructors

CSE 333, Winter 2026

18

W UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructors, and Copies

Assignment != Construction

“="is the assignment operator

= Assigns values to an existing, already constructed object

(Point W

Point x(1, 2);
Point y(x);
Point z
LY = X5

default ctor

CSE 333, Winter 2026

two-i1nts—-argument ctor

copy ctor
copy ctor

assignment operator

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Overloading the “=" Operator

“u_n

+ You can choose to define the “=" operator

" But there are some rules you should follow:

Point& Point::operator=(const Point& rhs) {
if (this != &rhs) { // (1) always check against this
X_ = rhs.x_;
y_ = rhs.y_;
+
return *this; // (2) always return xthis from op=
+
Point a; // default constructor
a =b = c; // works because = return *this
a = (b =2c); // equiv. to above (= i1s right-associative)
(a = b) = c; // "works'" because = returns a non-const

'rl‘ﬁ?l':l

—
"\v’n

<
-
m

20

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Synthesized Assighment Operator

+ If you don’t define the assignment operator, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e., member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
... // definitions for Distance() and SetlLocation()

int main(int argc, charxx argv) {
SimplePoint x;
SimplePoint y(x);
y = X; // invokes synthesized assignment operator
return EXIT_SUCCESS;

}

. J

21

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies

Lecture Outline (4/4)

J/
’0

Constructors
« Copy Constructors
+ Assignment
« Destructors

CSE 333, Winter 2026

22

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Destructors

% C++ has the notion of a destructor (dtor)

Invoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

Place to put your cleanup code — free any dynamic storage or
other resources owned by the object

Standard C++ idiom for managing dynamic resources
- Slogan: “Resource Acquisition Is Initialization” (RAIl)

After destructor body finishes, destruct members in reverse order
of declaration (i.e., reverse of initialization list)

\.

(Point::~Point() { // destructor

}

// Do any cleanup needed when a Point object goes away.
// Nothing to do here, but what if we had dynamic resources?

23

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Destructor Example

(class FileDescriptor {
public:
FileDescriptor(charx file) { // Constructor
fd_ = open(file, O_RDONLY);
// Error checking omitted

}

~FileDescriptor() { close(fd_); } // Destructor

int get_fd() const { return fd_; } // inline member function
private:

int fd_; // data member

}; // class FileDescriptor

FileDescriptor.h
_ J

#include "FileDescriptor.h"

int main(int argc, char*x argv) {
FileDescriptor fd("foo.txt");
return EXIT_SUCCESS;

}

24

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

+» How many times does the destructor get invoked?
= Assume Point with everything defined (ctor, cctor, =, dtor)

= Assume no compiler optimizations
test.cc

~

[Point PrintRad(Point& pt) {
Point origin(0, 0);
double r = origin.Distance(pt);
double theta = atan2(pt.get_y(), pt.get_x());
cout << '"r = " << r << endl;
cout << "theta = " << theta << " rad" << endl;
return pt;

}

int main(int argc, char*x argv) {
3 Point pt(3, 4);

PrintRad(pt) ;
4 return EXIT_SUCCESS;

L})
We’re lost...

O @ >
N

O

m

25

WA UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

\b‘&

Class Definition (from last lecture)

Point.h
(#'i fndef POINT_H_ Hais Const means that Hhis Tanction is nat 6 lloned T dhange R
#define POINT_H_ ohject on which T is ¢”ﬂ*(ﬁelmﬁa+ s psiter)

“é\“
class Point { PR
public:
Point(int x, int y), &//?/ constructor
{A,1nt get_x() const™{ return x_; }'% // inline member function
int get_y() const { return y_; // inline member function
Q:?double Distance(const Point& p) “const; // member function

}; // class Point noming converton for clasy Aot merbecy
(GO@&IQ (++ 5+y|'e 5uu}e

he

>void SetLocation(int x, 1int y); // member function

. ComPiLf‘r moLy Choose o E:\(f.and
pr-lvate: ’\\W\Q (\1&: & th(ro) lﬂfl'eclé Dn A\
int x_; // data member actual funcdon all
int y_3 ta member

#tendif // POINT_H_
\,

26

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Polling Solution

+» How many times does the destructor get invoked?

ctor op= dtor

test.cc

p
Point PrintRad(Point& pt) {

Point origin(0, 0);

double r = origin.Distance(pt);

double theta = atan2(pt.get_y(), pt.get_x());

cout << "r = " K< r << endl;

cout << "theta = " << theta << " rad" << endl;
return pt;

}

int main(int argc, charxx argv) {
Point pt(3, 4);
PrintRad(pt) ;
return EXIT_SUCCESS;

L} J 27

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Preview for Next Lecture

(class FileDescriptor {

public:

FileDescriptor(charx file) { // Constructor
fd_ = open(file, O_RDONLY);
// Error checking omitted

}

~FileDescriptor() { close(fd_); } // Destructor

int get_fd() const { return fd_; } // inline member function

private:

int fd_; // data member

}; // class FileDescriptor

FileDescriptor.h
_ J

[#include "FileDescriptor.h"

int main(int argc, char*xx argv) {
FileDescriptor fdl(foo.txt);

FileDescriptor fd2(fd); // Invokes synthesized cctor
return EXIT_SUCCESS; + What happens when we returv
} oand destruct our objects?

(This won't crash the program, but what if we were using heap allocation instead of file descriptors?))8

W UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructors, and Copies

Extra Exercise #1

+ Write a C++ program that:

" Has a class representing a 3-dimensional point
" Has the following methods:

- Return the inner product of two 3D points

- Return the distance between two 3D points

- Accessors and mutators for the X, y, and z coordinates

CSE 333, Winter 2026

29

W UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructors, and Copies

CSE 333, Winter 2026

Extra Exercise #2

+ Write a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

"= Has the following methods:

« Test if one box is inside another box
« Return the volume of a box

- Handles <<, =, and a copy constructor
- Uses const in all the right places

30

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Extra Exercise #3

+» Modify your Point3D class from Extra Exercise #1
= Disable the copy constructor and assignment operator

= Attempt to use copy & assignment in code and see what error the
compiler generates

" Write a CopyFrom() member function and try using it instead
- (See details about CopyFrom() in next lecture)

31

W UNIVERSITY of WASHINGTON L11: C++ Classes, Constructors, and Copies CSE 333, Winter 2026

Extra Exercise #4

+ Write a C++ class that:
= |s given the name of a file as a constructor argument

" Hasa GetNextWord () method that returns the next
whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

" Has a destructor that cleans up anything that needs cleaning up

32

	Slide 1: Vibe Check: How are you feeling about C++ right now?
	Slide 2: Systems Programming C++ Classes, Constructors, and Copies
	Slide 3: Relevant Course Information
	Slide 4: struct vs. class
	Slide 5: Memory Diagrams for Objects
	Slide 6: Lecture Outline (1/4)
	Slide 7: Constructors
	Slide 8: Synthesized Default Constructor Example
	Slide 9: Synthesized Default Constructor
	Slide 10: Multiple Constructors (overloading)
	Slide 11: Initialization Lists
	Slide 12: Initialization vs. Construction
	Slide 13: Lecture Outline (2/4)
	Slide 14: Copy Constructors
	Slide 15: Synthesized Copy Constructor
	Slide 16: When Do Copies Happen?
	Slide 17: Compiler Optimization: “Copy Elision”
	Slide 18: Lecture Outline (3/4)
	Slide 19: Assignment != Construction
	Slide 20: Overloading the “=” Operator
	Slide 21: Synthesized Assignment Operator
	Slide 22: Lecture Outline (4/4)
	Slide 23: Destructors
	Slide 24: Destructor Example
	Slide 25
	Slide 26: Class Definition (from last lecture)
	Slide 27: Polling Solution
	Slide 28: Preview for Next Lecture
	Slide 29: Extra Exercise #1
	Slide 30: Extra Exercise #2
	Slide 31: Extra Exercise #3
	Slide 32: Extra Exercise #4

