WA UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

About how long did Exercises 7 and 8 take
you? (two polls)

A.

B. [2,4)hours

C. [4,6) hours

D. [6, 8) hours

E. 8+ Hours

F. Ididn’t submit /| prefer not to say

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE 333, Winter 2026

Systems Programming

C++ References, Const, Classes

Instructors:
Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Relevant Course Information

+ No exercise released with today’s lecture
= Ex 9 will be more difficult (Rating: 4)

" Builds on concepts from both Wed and Fri’s lecture
g—,\

+» Homework 2 due a week from Thursday (2/5)

" Partner declaration form due tomorrow night

" File system crawler, indexer, and search engine

= Note: Libhwl. a (yours or ours) and the . h files from hw1 need
to be in right directory (~yourgit/hwl/)

= Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

https://forms.gle/FpXzYZ8yPMTAhDCs6
https://forms.gle/FpXzYZ8yPMTAhDCs6

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Lecture Outline (1/3)

+ C++ References
s« constinC++

« C++ Classes Intro

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Note: Arrow points

Pointers Reminder (1/6) to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charxx argv) {
int x = 5, y = 10; X 5
m— intx z = &x;

*xZ +=

13
X += 1;

y 10

z = &y;
*x7Z +=]_;

return EXIT_SUCCESS; z

_ J
pointer.cc

W UNIVERSITY of WASHINGTON

CSE 333, Winter 2026

L10: References, Const, Classes

Pointers Reminder (2/6)

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charx*x argv) {

int x = 5, y = 10;
intx z = &x;

— k7 += 1;

\.

}

X += 1;
z = &y;
*xz += 13

return EXIT_SUCCESS;

10

N\

0x7ﬁ3fma4

J/

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE 333, Winter 2026

Pointers Reminder (3/6)

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charx*x argv) {
int x = 5, y = 10;
intx z = &x;

xz += 13 // sets x to 6
— X += 1;

z = &y;
*x7Z +=]_;

return EXIT_SUCCESS;
}

\.

10

N\

Ox?ﬁgfma4

J/

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE 333, Winter 2026

Pointers Reminder (4/6)

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charx*x argv) {
int x = 5, y = 10;
intx z = &x;

xz += 13 // sets x to 6
x += 1; // sets x (and *z) to 7

—> z = &y;

xz += 1;

return EXIT_SUCCESS;
}

\.

10

N

Ox?ﬁ&fma4

J/

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Pointers Reminder (5/6)

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charx*x argv) {
int x = 5, y = 10; X 7
intx z = &x;

*xZ +=

1l; // sets x to 6
X += 1;

// sets x (and *z) to 7 y 10
z = &y; // sets z to the address of y
— k7 += 1;

return EXIT_SUCCESS; z Ox7f0f..a0

}

_ J
pointer.cc

W UNIVERSITY of WASHINGTON

Pointers Reminder (6/6)

L10: References, Const, Classes

" These work the same in C and C++

m—r=Pp return EXIT_SUCCESS;

\.

(int main(int argc, charxx argv) {
int x = 5, y = 10;
intx z = &x;

(and *z) to 7

to the address of y
(and *z) to 11

pointer.cc

CSE 333, Winter 2026

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

gl

z | ox7f0f.a0

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE 333, Winter 2026

References (1/6)

« A reference is an alias for another variable

Note: Arrow points

to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |Introduced in C++ as part of the language

(int main(int argc, charxx argv) {

int x = 5, y = 10;

— iNt& z = X;

\.

}

z += 1,
X += 1;
Z =Y
z += 1,

return EXIT_SUCCESS;

J/

reference.cc

11

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

References (2/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

" |Introduced in C++ as part of the language

(int main(int argc, charxx argv) {

int x = 5, y = 10;

int& z = x3 // binds the name "z" to x

— 7z += 1
X += 1;
Z =Y
z += 1,

\.

}

return EXIT_SUCCESS;

10

J/

reference.cc

12

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

References (3/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

" |Introduced in C++ as part of the language

(int main(int argc, charxx argv) {

int x = 5, y = 10;

int& z = x3 // binds the name "z" to x

z += 1; /J/ sets z (and x) to 6

— x += 1
zZ =Y
z += 1,

\.

}

return EXIT_SUCCESS;

10

J/

reference.cc

13

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

References (4/6)

« A reference is an alias for another variable

L10: References, Const, Classes

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |Introduced in C++ as part of the language

qz

\.

}

(int main(int argc, charxx argv) {

int x = 5, y = 10;

int& z = x3 // binds the name "z" to x

z += 1; /J/ sets z (and x) to 6
x += 13 // sets x (and z) to 7

Y5 //hov’Md\\ C\.S.S'\;SV\MGV\-} .’
1

zZ +

return EXIT_SUCCESS;

J/

reference.cc

14

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

References (5/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |Introduced in C++ as part of the language

(int main(int argc, charxx argv) {
int x = 5, y = 10; X, Z 10
int& z = x3 // binds the name "z" to x

z += 1; /J/ sets z (and x) to 6

x += 13 // sets x (and z) to 7 y 10
z =vy; /J/ sets z (and x) to the value of y
—P z += 1

return EXIT_SUCCESS;

}

_ Y,
reference.cc

15

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

References (6/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

" |Introduced in C++ as part of the language

int x = 5, y = 10;

int& z = x3 // binds the name "z" to x

z += 1; // sets z (and x)
x += 1; // sets x (and z)

y; // sets z (and x)

z
z 1; // sets z (and x)

m—r=Pp return EXIT_SUCCESS;

\.

}

to
to

to
to

(int main(int argc, charxx argv) {

6
14

the value of y

11

11

10

J/

reference.cc

16

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Note: Arrow points

Pa Ss-By-Refe rence (1/6) to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) { h
int tmp = x; (main) a 5
X = VY; malin
y = tmp;

}

int main{int /Argc, char*x argv) { (main) b 10
int af= 5,/b = 10;

=—t=p Swap(a, b);

cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;

S J

passbyreference.cc 17

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pass-By-Reference (2/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE 333, Winter 2026

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(main) a <E{;2
(Swap) x
(main) b 10
(Swap) y

(Swap) tmp 4

(void Swap(int& x, int& y) { h
P Nt tmp = Xx;
X =Y
y = tmp;
}
int main(int argc, char*x argv) {
int a =5, b = 10;
Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;
S J

passbyreference.cc

18

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pass-By-Reference (3/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE 333, Winter 2026

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(main) a 5
(Swap) x
(main) b <£g)/
(Swap) ¥

(Swap) tmp 5

(void Swap(int& x, int& y) { h
int tmp = x;
q X = y;
y = tmp;
}
int main(int argc, char*x argv) {
int a =5, b = 10;
Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;
S y,

passbyreference.cc

19

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pass-By-Reference (4/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE 333, Winter 2026

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(main) a 10
(Swap) x
(main) b 10
(Swap) ¥

(Swap) tmp QS)

(void Swap(int& x, int& y) { h
int tmp = x;
X =Y
=P y = tmp;
}
int main(int argc, char*x argv) {
int a =5, b = 10;
Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;
S J

passbyreference.cc

20

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pass-By-Reference (5/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE 333, Winter 2026

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(main) a 10
(Swap) x
(main) b 5
(Swap) ¥

(Swap) tmp 5

(void Swap(int& x, int& y) { h
int tmp = x;
X =Y
y = tmp;

ﬁ
int main(int argc, char*x argv) {

int a =5, b = 10;
Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;

S J

passbyreference.cc

21

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

Pass-By-Reference (6/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) { h
int tmp = x;
X =Y
y = tmp;
}
int main(int argc, char*x argv) {
int a =5, b = 10;
Swap(a, b);
= CcOUt << "a: " << a <K< "y b: " <K<K b << endl;
return EXIT_SUCCESS;
S J

CSE 333, Winter 2026

(main) a

10

(main) b

passbyreference.cc

22

WA UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

What will happen when we try to compile and
run this code? poll1.cc

A.
| B. Output "(3,2,3)" |
C. Compiler error

N\

int main(int argc, charx* argv

about arguments int a = 1; (rao)a, e (4
. . . = 9 foo ——
to Foo (in main) int b= 2; () =
int& ¢ = a; Gmm)bl<571

D. Compiler error (. &b. O
Foo(a c);
about body of FOO| ctd::cout << (" << a << ", " << b

<< 1] 1] << << my n << td: . d'L.
E. We're lost... ’ c) SEAe - Enat;
return EXIT_SUCCESS;

23

WA UNIVERSITY of WASHINGTON L10: References, Const, Classes

Lecture Outline (2/3)

& C++ References
+ constin C++

« C++ Classes Intro

CSE 333, Winter 2026

24

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const

%+ const: this cannot be changed/mutated

= Used much more in C++ than in C

<{¥ Signal of intent to compiler; meaningless at hardware level

- Results in compile-time errors

(void BrokenPrintSquare(const int& i) {)

i = 1i%xi; // compiler error here!
std::cout << i << std::endl;

}

int main(int argc, char*xx argv) {
int j = 2;
BrokenPrintSquare(j);
return EXIT_SUCCESS;

}

\. J

brokenpassbyrefconst.cc

25

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const and Pointers

\/
0’0

o0

Pointers can change data in two different contexts:

lr\Jf X)'

1) You can change the value of the pointer 7 _ - X1)
(i.e., address stored) P= i)

2) You can change the thing the pointer points to
(via dereference)

const can be used to prevent either/both of these
behaviors!

= const next to pointer name means you can’t change the value of
the pointer it oD p; X
= const next to data type pointed to means you can’t use this

pointer to change the thing being pointed to @ *Lr\(_) -
= Tip: read variable declaration from right-to-left </

26

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const and Pointers Examples

+ The syntax with pointers is confusing:

U

(int main(int argc, charx* argv) {

Ay++;

xzZ += 1;
Z++] blue= aldrese
int* const w = &X; // (const pointer) to a (variable int)
*w += 13
Kowres

><v++;

// int
// (const int)

int x = 5;
const int y = 6;

const intx z = &y; // pointer to a (const int)

const intx const v = &x; // (const pointer) to a (const int)
Vv += 1;

return EXIT_SUCCESS;

J

constmadness.cc ,;

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const and Pointers Examples: Outcomes

+ The syntax with pointers is confusing:

(int main(int argc, charx* argv) {

int x = 5; // int

const int y = 6; // (const 1int)

y++; // compiler error

const intx z = &y; // pointer to a (const int)

xz += 1; // compiler error

Z++; // ok

int* const w = &x; // (const pointer) to a (variable int)
*xwW +=]_; // ok

w++; // compiler error

const intx const v = &x; // (const pointer) to a (const int)
xv += 1; // compiler error
VAR // compiler error

return EXIT_SUCCESS;
\} J

constmadness.cc g

W UNIVERSITY of WASHINGTON

const Parameters

« A const parameter
cannot be mutated inside
the function

" Therefore it does not
matter if the argument can
be mutated or not

+ A non-const parameter
may be mutated inside

the function J
= Compiler won’t let yo

pass in const parameters

L10: References, Const, Classes

CSE 333, Winte

r 2026

]

S

=~

—

Make parameters const when you can!

<

'LE

F

[void Foo(gconst intx y) {
std::cout << xy << std:

}

void Bar(int*Ly) {
std::cout << xy“<< std:

}

int main(int argc, char*x argv) {

rendl;
AOESY\‘\' K‘luM“/ ol -F\

va\\A& 0 \/

rendl;

const int a = 10;
int b = 20;
{Foo(&a), // OK
Foo(&b) ; // OK
—>Bar (&a) ; // not OK - error
Bar (&b) ; // OK

return EXIT_SUCCESS;

|

29

WA UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

What will happen when we try to compile and

con't change o ddves shred n X, butcon

run this COdE? \/CL\OV\SC (‘he'%(/\jﬂ’r»;ﬂj +°p0”2.CC
(. c v)
void Foo(int* const x,
A. int ref int& y, dint %)L{
*X += 15 /) allowed local copy 6F int
B. Output "(2,4,3)" Y %= 23 / Mlosek
. z —= 3; alowed, L3 hos no | esting efed
C. Compiler error) X 2
about a.rgum?nts int main(int argc, char** argv) {
to Foo (in main) const int a = 1;

D.C | int b =2, ¢ = 3;
cecomplier error
; Foo(gé,\g,\g);

about body of Foo std:icout << "(" << a << "," << b

<L nm n << << myn << oo N
E. We’re lost...) ¢) std::endl;
return EXIT_SUCCESS;

}

\, J

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

]

élﬁj
=
3!

—
-<‘-U’"

When to Use References?

+ A stylistic choice, not mandated by the C++ language
Google C++ style guide suggests:

" |nput parameters:
- Either use values (for primitive types like int or small
structs/objects) [void moking copy of sropment

« Oruse COljlst references (for complex struct(object mstances)
on't change M funchon low s bsth const € non-const arymen‘l’j
" Qutput parameters:

- Use const pointers
— Unchangeable pointers referencing changeable data 2 wclve <94v7'j>

= Ordering: using sh:: chiv
- List input parameters first, then output parameters Iastl

size_t StringBefore(const string& input, const string& search,
string* const result) {
xresult = input.substr(0, input.find(search));
return input.find(search); consh povder o

} bl e gy styleguide.cc]) 3

WA UNIVERSITY of WASHINGTON L10: References, Const, Classes

Lecture Outline (3/3)

& C++ References
&« constin C++

« C++ Classes Intro

CSE 333, Winter 2026

32

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Classes

Class definition syntax (in a . h file):

(class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here
}C) // class Name
_ J
\— Oof\ -t ‘*Orgej"

"= Members can be functions (methods) or data (variables)

Class member function definition syntax (in a . cc file):

retType Name::MethodName(typel paraml, .., typeN paramN) {
// body statements

}

® (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

33

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Class Organization

+ It’s a little more complex than in C when modularizing
with struct definition:
= (Class definition is part of interface and should go in . h file
« Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details

- Common exception: setter and getter methods

" These files can also include non-member functions that use the
class

+ Unlike Java, you can name files anything you want
= Typically Name.cc and Name.h forclass Name

34

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const & Classes

+ Like other data types, objects can be declared as const:

" Once a const object has been constructed, its member variables
can’t be changed

= Can only invoke member functions that are labeled const

+ You can declare a member function of a class as const

" This means that if cannot modify the object it was called on

- The compiler will treat member variables as const inside the
function at compile time

= |f a member function doesn’t modify the object, mark it const!

35

WA UNIVERSITY of WASHINGTON

s

Class Definition (. h file)

L10: References, Const, Classes CSE 333, Winter 2026

STY.LE
A\

TIP

Point.h Y

public:

private:
int x_;
int y_3

class Point {

Point(const int x
[j int get_x() cons
4$ int get_y() const { return y_;

double Distance(const Point& p) “const; W;ii’member function
/

}; // class Point

[#ifndef POINT_H_
#define POINT_H_

>void SetLocation(const int x, const int y);

// data member
ata member

#tendif // POINT_H_
\,

et or2
const int\y); y//// constructor
{ return x_; }.% // inline member function

nam'.:\ﬁ convention for Cl&S) &x\khelmlaeo

Hais const means That dhis anction is nat gllowed To drornge +
objed on which s called (the imphet “is" poinstec)

No A

// inline member function

/ member function

Com?i'f’f may Chose o exg
inline (ke 6 macro) ingead

&C'\'U\k\ ’(\,Lr\ (,“’TDV\ CG\\\

(Go%le (H style guide

he

CU\A

DN AN

36

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Class Member Definitions (. cc file)
Point.cc
(#jnclude <cm§th> :;W\/le
#include "Point.h" {éﬁXV> \

Loed hee on purpose

Point::Point(const int x, const int y) {

X_ = X; ecku\'uw\\en“' to y_ = \/)
this—>y_\f y; // "this->" 1s optional unless name conflicts
} ﬁ—\\‘H«i_S'(\§ (PO-\\'\‘\'* (-°“‘d’) makes " ‘Hr\f)” A (Con:‘\ Poiy ¥ (O’\S—'.)I

double Point::Distance(const Point& p) const {
// We can access p’s x_ and y_ variables either through the
// get_x(), get_y() accessor functions or the x_, y_ private
// member variables directly, since we’re in a member
// function of the same class. 6"&W”““+'b P-X-
double distance = (x_ - p.get_x()) » (x_ - p.get_x());
distance += (y_ - p.y_) * (y_ - p.y_);
: return sqrt(distance); ool be st %mm&
(W Gre mutating thig”
void Point::SetLocation(const int x, const int y)v{
X_ = X;
Y_ = Y5

37

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE 333, Winter 2026

Class Usage (. cc file)

usepoint.cc

7

#include <iostream>
#include <cstdlib>
#include

"Point.h"

using namespace std;

int main(int argc, char*xx argv) {

Point pl1(l, 2);
Point p2(4, 6);

cout
cout

cout
cout

cout

<<

"pl is: (" <<

// allocate a new Point on the Stack
// allocate a new Point on the Stack

pl.get_x() << ", ";

<< pl.get_y() <<)" << endl;

<< "p2 ds: (" << p2.get_x() << ", ";

<< p2.get_y() << """ << endl;

<< "dist : " << pl.Distance(p2) << endl;
\—/W—\/

return EXIT_SUCCESS;

Aot notaton " used Tor member fanctons

j

ca\ls defined

Co'\.s'i’md\v

N

38

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Reading Assignment

\/
0’0

Before next time, read the sections in C++ Primer covering
class constructors, copy constructors, assignment
(operator=), and destructors

= Free link for UW students to the relevant section (§13.1.1)
 Click “Read now” and scroll down to “®@ Academic user?”

" |gnore “move semantics” for now

" The table of contents and index are your friends...

39

https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html

	Slide 1: About how long did Exercises 7 and 8 take you? (two polls)
	Slide 2: Systems Programming C++ References, Const, Classes
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/3)
	Slide 5: Pointers Reminder (1/6)
	Slide 6: Pointers Reminder (2/6)
	Slide 7: Pointers Reminder (3/6)
	Slide 8: Pointers Reminder (4/6)
	Slide 9: Pointers Reminder (5/6)
	Slide 10: Pointers Reminder (6/6)
	Slide 11: References (1/6)
	Slide 12: References (2/6)
	Slide 13: References (3/6)
	Slide 14: References (4/6)
	Slide 15: References (5/6)
	Slide 16: References (6/6)
	Slide 17: Pass-By-Reference (1/6)
	Slide 18: Pass-By-Reference (2/6)
	Slide 19: Pass-By-Reference (3/6)
	Slide 20: Pass-By-Reference (4/6)
	Slide 21: Pass-By-Reference (5/6)
	Slide 22: Pass-By-Reference (6/6)
	Slide 23: What is your anticipated lecture/section attendance modality?
	Slide 24: Lecture Outline (2/3)
	Slide 25: const
	Slide 26: const and Pointers
	Slide 27: const and Pointers Examples
	Slide 28: const and Pointers Examples: Outcomes
	Slide 29: const Parameters
	Slide 30: What is your anticipated lecture/section attendance modality?
	Slide 31: When to Use References?
	Slide 32: Lecture Outline (3/3)
	Slide 33: Classes
	Slide 34: Class Organization
	Slide 35: const & Classes
	Slide 36: Class Definition (.h file)
	Slide 37: Class Member Definitions (.cc file)
	Slide 38: Class Usage (.cc file)
	Slide 39: Reading Assignment

