
CSE 333, Winter 2026L10: References, Const, Classes

1

About how long did Exercises 7 and 8 take
you? (two polls)

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

pollev.com/cse333a

CSE 333, Winter 2026L10: References, Const, Classes

Systems Programming
C++ References, Const, Classes

Instructors:

Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE 333, Winter 2026L10: References, Const, Classes

Relevant Course Information

❖ No exercise released with today’s lecture

▪ Ex 9 will be more difficult (Rating: 4)

▪ Builds on concepts from both Wed and Fri’s lecture

❖ Homework 2 due a week from Thursday (2/5)

▪ Partner declaration form due tomorrow night

▪ File system crawler, indexer, and search engine

▪ Note: libhw1.a (yours or ours) and the .h files from hw1 need
to be in right directory (~yourgit/hw1/)

▪ Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

3

https://forms.gle/FpXzYZ8yPMTAhDCs6
https://forms.gle/FpXzYZ8yPMTAhDCs6

CSE 333, Winter 2026L10: References, Const, Classes

Lecture Outline (1/3)

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

4

CSE 333, Winter 2026L10: References, Const, Classes

Pointers Reminder (1/6)

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

▪ These work the same in C and C++

5

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1;
 x += 1;

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

CSE 333, Winter 2026L10: References, Const, Classes

Pointers Reminder (2/6)

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

▪ These work the same in C and C++

6

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1;
 x += 1;

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

CSE 333, Winter 2026L10: References, Const, Classes

Pointers Reminder (3/6)

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

▪ These work the same in C and C++

7

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1;

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

CSE 333, Winter 2026L10: References, Const, Classes

Pointers Reminder (4/6)

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

▪ These work the same in C and C++

8

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

CSE 333, Winter 2026L10: References, Const, Classes

Pointers Reminder (5/6)

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

▪ These work the same in C and C++

9

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

CSE 333, Winter 2026L10: References, Const, Classes

Pointers Reminder (6/6)

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

▪ These work the same in C and C++

10

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y
 *z += 1; // sets y (and *z) to 11

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

CSE 333, Winter 2026L10: References, Const, Classes

References (1/6)

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

11

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x;

 z += 1;
 x += 1;

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

CSE 333, Winter 2026L10: References, Const, Classes

References (2/6)

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

12

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1;
 x += 1;

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

CSE 333, Winter 2026L10: References, Const, Classes

References (3/6)

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

13

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1;

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

CSE 333, Winter 2026L10: References, Const, Classes

References (4/6)

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

14

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

CSE 333, Winter 2026L10: References, Const, Classes

References (5/6)

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

15

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

CSE 333, Winter 2026L10: References, Const, Classes

References (6/6)

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

16

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y
 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

CSE 333, Winter 2026L10: References, Const, Classes

Pass-By-Reference (1/6)

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

17

void Swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 Swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

CSE 333, Winter 2026L10: References, Const, Classes

Pass-By-Reference (2/6)

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

18

void Swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 Swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(Swap) x

5

(main) b
(Swap) y

10

(Swap) tmp

CSE 333, Winter 2026L10: References, Const, Classes

Pass-By-Reference (3/6)

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

19

void Swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 Swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(Swap) x

5

(main) b
(Swap) y

10

(Swap) tmp 5

CSE 333, Winter 2026L10: References, Const, Classes

Pass-By-Reference (4/6)

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

20

void Swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 Swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(Swap) x

10

(main) b
(Swap) y

10

(Swap) tmp 5

CSE 333, Winter 2026L10: References, Const, Classes

Pass-By-Reference (5/6)

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

21

void Swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 Swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(Swap) x

10

(main) b
(Swap) y

5

(Swap) tmp 5

CSE 333, Winter 2026L10: References, Const, Classes

Pass-By-Reference (6/6)

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

22

void Swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 Swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a 10

(main) b 5

CSE 333, Winter 2026L10: References, Const, Classes

What is your anticipated lecture/section
attendance modality?

A. Output "(1,2,3)"

B. Output "(3,2,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We’re lost…

23

What will happen when we try to compile and
run this code? poll1.cc

void Foo(int& x, int* y, int z) {
 z = *y;
 x += 2;
 y = &x;
}

int main(int argc, char** argv) {
 int a = 1;
 int b = 2;
 int& c = a;

 Foo(a, &b, c);
 std::cout << "(" << a << ", " << b
 << ", " << c << ")" << std::endl;

 return EXIT_SUCCESS;
}

pollev.com/cse333a

CSE 333, Winter 2026L10: References, Const, Classes

Lecture Outline (2/3)

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

24

CSE 333, Winter 2026L10: References, Const, Classes

const

❖ const: this cannot be changed/mutated

▪ Used much more in C++ than in C

▪ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

25

void BrokenPrintSquare(const int& i) {
 i = i*i; // compiler error here!
 std::cout << i << std::endl;
}

int main(int argc, char** argv) {
 int j = 2;
 BrokenPrintSquare(j);
 return EXIT_SUCCESS;
}

brokenpassbyrefconst.cc

CSE 333, Winter 2026L10: References, Const, Classes

const and Pointers

❖ Pointers can change data in two different contexts:

1) You can change the value of the pointer
(i.e., address stored)

2) You can change the thing the pointer points to
(via dereference)

❖ const can be used to prevent either/both of these
behaviors!

▪ const next to pointer name means you can’t change the value of
the pointer

▪ const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

▪ Tip: read variable declaration from right-to-left

26

CSE 333, Winter 2026L10: References, Const, Classes

const and Pointers Examples

❖ The syntax with pointers is confusing:

27

int main(int argc, char** argv) {
 int x = 5; // int
 const int y = 6; // (const int)
 y++;

 const int* z = &y; // pointer to a (const int)
 *z += 1;
 z++;

 int* const w = &x; // (const pointer) to a (variable int)
 *w += 1;
 w++;

 const int* const v = &x; // (const pointer) to a (const int)
 *v += 1;
 v++;

 return EXIT_SUCCESS;
}

constmadness.cc

CSE 333, Winter 2026L10: References, Const, Classes

const Parameters

❖ A const parameter
cannot be mutated inside
the function

▪ Therefore it does not
matter if the argument can
be mutated or not

❖ A non-const parameter
may be mutated inside
the function

▪ Compiler won’t let you
pass in const parameters

29

void Foo(const int* y) {
 std::cout << *y << std::endl;
}

void Bar(int* y) {
 std::cout << *y << std::endl;
}

int main(int argc, char** argv) {
 const int a = 10;
 int b = 20;

 Foo(&a); // OK
 Foo(&b); // OK
 Bar(&a); // not OK – error
 Bar(&b); // OK

 return EXIT_SUCCESS;
}

STYLE
TIP

Make parameters const when you can!

CSE 333, Winter 2026L10: References, Const, Classes

What is your anticipated lecture/section
attendance modality?

A. Output "(2,4,0)"

B. Output "(2,4,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We’re lost…

30

What will happen when we try to compile and
run this code?

void Foo(int* const x,
 int& y, int z) {
 *x += 1;
 y *= 2;
 z -= 3;
}

int main(int argc, char** argv) {
 const int a = 1;
 int b = 2, c = 3;

 Foo(&a, b, c);
 std::cout << "(" << a << "," << b
 << "," << c << ")" << std::endl;

 return EXIT_SUCCESS;
}

poll2.cc

pollev.com/cse333a

CSE 333, Winter 2026L10: References, Const, Classes

When to Use References?

❖ A stylistic choice, not mandated by the C++ language

❖ Google C++ style guide suggests:

▪ Input parameters:
• Either use values (for primitive types like int or small

structs/objects)
• Or use const references (for complex struct/object instances)

▪ Output parameters:
• Use const pointers

– Unchangeable pointers referencing changeable data

▪ Ordering:
• List input parameters first, then output parameters last

31

size_t StringBefore(const string& input, const string& search,
 string* const result) {
 *result = input.substr(0, input.find(search));
 return input.find(search);
} styleguide.cc

STYLE
TIP

CSE 333, Winter 2026L10: References, Const, Classes

Lecture Outline (3/3)

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

32

CSE 333, Winter 2026L10: References, Const, Classes

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cc file):

▪ (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

33

class Name {
 public:
 // public member definitions & declarations go here

 private:
 // private member definitions & declarations go here
}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {
 // body statements
}

CSE 333, Winter 2026L10: References, Const, Classes

Class Organization

❖ It’s a little more complex than in C when modularizing
with struct definition:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

▪ Usually put member function definitions into companion .cc file
with implementation details

• Common exception: setter and getter methods

▪ These files can also include non-member functions that use the
class

❖ Unlike Java, you can name files anything you want

▪ Typically Name.cc and Name.h for class Name

34

CSE 333, Winter 2026L10: References, Const, Classes

const & Classes

❖ Like other data types, objects can be declared as const:

▪ Once a const object has been constructed, its member variables
can’t be changed

▪ Can only invoke member functions that are labeled const

❖ You can declare a member function of a class as const

▪ This means that if cannot modify the object it was called on

• The compiler will treat member variables as const inside the
function at compile time

▪ If a member function doesn’t modify the object, mark it const!

35

CSE 333, Winter 2026L10: References, Const, Classes

Class Definition (.h file)

36

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y); // constructor
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const Point& p) const; // member function
 void SetLocation(const int x, const int y); // member function

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

#endif // POINT_H_

Point.h

STYLE
TIP

CSE 333, Winter 2026L10: References, Const, Classes

Class Member Definitions (.cc file)

37

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
 x_ = x;
 this->y_ = y; // "this->" is optional unless name conflicts
}

double Point::Distance(const Point& p) const {
 // We can access p’s x_ and y_ variables either through the
 // get_x(), get_y() accessor functions or the x_, y_ private
 // member variables directly, since we’re in a member
 // function of the same class.
 double distance = (x_ - p.get_x()) * (x_ - p.get_x());
 distance += (y_ - p.y_) * (y_ - p.y_);
 return sqrt(distance);
}

void Point::SetLocation(const int x, const int y) {
 x_ = x;
 y_ = y;
}

Point.cc

CSE 333, Winter 2026L10: References, Const, Classes

Class Usage (.cc file)

38

#include <iostream>
#include <cstdlib>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
 Point p1(1, 2); // allocate a new Point on the Stack
 Point p2(4, 6); // allocate a new Point on the Stack

 cout << "p1 is: (" << p1.get_x() << ", ";
 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";
 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;
 return EXIT_SUCCESS;
}

usepoint.cc

CSE 333, Winter 2026L10: References, Const, Classes

Reading Assignment

❖ Before next time, read the sections in C++ Primer covering
class constructors, copy constructors, assignment
(operator=), and destructors

▪ Free link for UW students to the relevant section (§13.1.1)

• Click “Read now” and scroll down to “ Academic user?”

▪ Ignore “move semantics” for now

▪ The table of contents and index are your friends…

39

https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html

	Slide 1: About how long did Exercises 7 and 8 take you? (two polls)
	Slide 2: Systems Programming C++ References, Const, Classes
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/3)
	Slide 5: Pointers Reminder (1/6)
	Slide 6: Pointers Reminder (2/6)
	Slide 7: Pointers Reminder (3/6)
	Slide 8: Pointers Reminder (4/6)
	Slide 9: Pointers Reminder (5/6)
	Slide 10: Pointers Reminder (6/6)
	Slide 11: References (1/6)
	Slide 12: References (2/6)
	Slide 13: References (3/6)
	Slide 14: References (4/6)
	Slide 15: References (5/6)
	Slide 16: References (6/6)
	Slide 17: Pass-By-Reference (1/6)
	Slide 18: Pass-By-Reference (2/6)
	Slide 19: Pass-By-Reference (3/6)
	Slide 20: Pass-By-Reference (4/6)
	Slide 21: Pass-By-Reference (5/6)
	Slide 22: Pass-By-Reference (6/6)
	Slide 23: What is your anticipated lecture/section attendance modality?
	Slide 24: Lecture Outline (2/3)
	Slide 25: const
	Slide 26: const and Pointers
	Slide 27: const and Pointers Examples
	Slide 29: const Parameters
	Slide 30: What is your anticipated lecture/section attendance modality?
	Slide 31: When to Use References?
	Slide 32: Lecture Outline (3/3)
	Slide 33: Classes
	Slide 34: Class Organization
	Slide 35: const & Classes
	Slide 36: Class Definition (.h file)
	Slide 37: Class Member Definitions (.cc file)
	Slide 38: Class Usage (.cc file)
	Slide 39: Reading Assignment

