WA UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

About how long did Exercises 7 and 8 take
you? (two polls)

A.

B. [2,4)hours

C. [4,6) hours

D. [6, 8) hours

E. 8+ Hours

F. Ididn’t submit /| prefer not to say

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE 333, Winter 2026

Systems Programming

C++ References, Const, Classes

Instructors:
Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Relevant Course Information

» No exercise released with today’s lecture
= Ex 9 will be more difficult (Rating: 4)
" Builds on concepts from both Wed and Fri’s lecture

» Homework 2 due a week from Thursday (2/5)

" Partner declaration form due tomorrow night

" File system crawler, indexer, and search engine

= Note: Libhwl. a (yours or ours) and the . h files from hw1 need
to be in right directory (~yourgit/hwl/)

= Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

https://forms.gle/FpXzYZ8yPMTAhDCs6
https://forms.gle/FpXzYZ8yPMTAhDCs6

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Lecture Outline (1/3)

+ C++ References
s« constinC++

« C++ Classes Intro

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Note: Arrow points

Pointers Reminder (1/6) to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charxx argv) {
int x = 5, y = 10; X 5
m— intx z = &x;

*xZ +=

13
X += 1;

y 10

z = &y;
*x7Z +=]_;

return EXIT_SUCCESS; z

_ J
pointer.cc

W UNIVERSITY of WASHINGTON

CSE 333, Winter 2026

L10: References, Const, Classes

Pointers Reminder (2/6)

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charx*x argv) {

int x = 5, y = 10;
intx z = &x;

— k7 += 1;

\.

}

X += 1;
z = &y;
*xz += 13

return EXIT_SUCCESS;

10

N\

0x7ﬁ3fma4

J/

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE 333, Winter 2026

Pointers Reminder (3/6)

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charx*x argv) {
int x = 5, y = 10;
intx z = &x;

xz += 13 // sets x to 6
— X += 1;

z = &y;
*x7Z +=]_;

return EXIT_SUCCESS;
}

\.

10

N\

Ox?ﬁgfma4

J/

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE 333, Winter 2026

Pointers Reminder (4/6)

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charx*x argv) {
int x = 5, y = 10;
intx z = &x;

xz += 13 // sets x to 6
x += 1; // sets x (and *z) to 7

—> z = &y;

xz += 1;

return EXIT_SUCCESS;
}

\.

10

N

Ox?ﬁ&fma4

J/

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Pointers Reminder (5/6)

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, charx*x argv) {
int x = 5, y = 10; X 7
intx z = &x;

*xZ +=

1l; // sets x to 6
X += 1;

// sets x (and *z) to 7 y 10
z = &y; // sets z to the address of y
— k7 += 1;

return EXIT_SUCCESS; z Ox7f0f..a0

}

_ J
pointer.cc

W UNIVERSITY of WASHINGTON

Pointers Reminder (6/6)

L10: References, Const, Classes

" These work the same in C and C++

m—r=Pp return EXIT_SUCCESS;

\.

(int main(int argc, charxx argv) {
int x = 5, y = 10;
intx z = &x;

(and *z) to 7

to the address of y
(and *z) to 11

pointer.cc

CSE 333, Winter 2026

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify the variable it points to, but
you can access/modify what it points to by dereferencing

gl

z | ox7f0f.a0

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE 333, Winter 2026

References (1/6)

« A reference is an alias for another variable

Note: Arrow points

to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |Introduced in C++ as part of the language

(int main(int argc, charxx argv) {

int x = 5, y = 10;

— iNt& z = X;

\.

}

z += 1,
X += 1;
Z =Y
z += 1,

return EXIT_SUCCESS;

J/

reference.cc

11

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

References (2/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

" |Introduced in C++ as part of the language

(int main(int argc, charxx argv) {

int x = 5, y = 10;

int& z = x3 // binds the name "z" to x

— 7z += 1
X += 1;
Z =Y
z += 1,

\.

}

return EXIT_SUCCESS;

10

J/

reference.cc

12

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

References (3/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

" |Introduced in C++ as part of the language

(int main(int argc, charxx argv) {

int x = 5, y = 10;

int& z = x3 // binds the name "z" to x

z += 1; /J/ sets z (and x) to 6

— x += 1
zZ =Y
z += 1,

\.

}

return EXIT_SUCCESS;

10

J/

reference.cc

13

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE 333, Winter 2026

References (4/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |Introduced in C++ as part of the language

qz

\.

}

(int main(int argc, charxx argv) {

int x = 5, y = 10;

int& z = x3 // binds the name "z" to x

z += 1; /J/ sets z (and x) to 6
x += 13 // sets x (and z) to 7

Y5
L3

zZ +

return EXIT_SUCCESS;

10

J/

reference.cc

14

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

References (5/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |Introduced in C++ as part of the language

(int main(int argc, charxx argv) {
int x = 5, y = 10; X, Z 10
int& z = x3 // binds the name "z" to x

z += 1; /J/ sets z (and x) to 6

x += 13 // sets x (and z) to 7 y 10
z =vy; /J/ sets z (and x) to the value of y
—P z += 1

return EXIT_SUCCESS;

}

_ Y,
reference.cc

15

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

References (6/6)

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

" |Introduced in C++ as part of the language

int x = 5, y = 10;

int& z = x3 // binds the name "z" to x

z += 1; // sets z (and x)
x += 1; // sets x (and z)

y; // sets z (and x)

z
z 1; // sets z (and x)

m—r=Pp return EXIT_SUCCESS;

\.

}

to
to

to
to

(int main(int argc, charxx argv) {

6
14

the value of y

11

11

10

J/

reference.cc

16

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Note: Arrow points

Pa Ss-By-Refe rence (1/6) to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) { h
int tmp = x; . a 5
X = y; (main)
y = tmp;
}
int main(int argc, char*x argv) { (main) b 10
int a =5, b = 10;
=== Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;
S y

passbyreference.cc 17

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pass-By-Reference (2/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE 333, Winter 2026

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(main) a 5
(Swap) x
(main) b 10
(Swap) y

(Swap) tmp

(void Swap(int& x, int& y) { h
P Nt tmp = Xx;
X =Y
y = tmp;
}
int main(int argc, char*x argv) {
int a =5, b = 10;
Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;
S J

passbyreference.cc

18

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pass-By-Reference (3/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE 333, Winter 2026

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(main) a 5
(Swap) x
(main) b 10
(Swap) ¥

(Swap) tmp 5

(void Swap(int& x, int& y) { h
int tmp = x;
q X = y;
y = tmp;
}
int main(int argc, char*x argv) {
int a =5, b = 10;
Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;
S y,

passbyreference.cc

19

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pass-By-Reference (4/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE 333, Winter 2026

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(main) a 10
(Swap) x
(main) b 10
(Swap) ¥

(Swap) tmp 5

(void Swap(int& x, int& y) { h
int tmp = x;
X =Y
=P y = tmp;
}
int main(int argc, char*x argv) {
int a =5, b = 10;
Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;
S J

passbyreference.cc

20

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pass-By-Reference (5/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE 333, Winter 2026

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(main) a 10
(Swap) x
(main) b 5
(Swap) ¥

(Swap) tmp 5

(void Swap(int& x, int& y) { h
int tmp = x;
X =Y
y = tmp;

ﬁ
int main(int argc, char*x argv) {

int a =5, b = 10;
Swap(a, b);
cout << "a: " << a << '"; b: " << b << endl;
return EXIT_SUCCESS;

S J

passbyreference.cc

21

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

Pass-By-Reference (6/6)

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) { h
int tmp = x;
X =Y
y = tmp;
}
int main(int argc, char*x argv) {
int a =5, b = 10;
Swap(a, b);
= CcOUt << "a: " << a <K< "y b: " <K<K b << endl;
return EXIT_SUCCESS;
S J

CSE 333, Winter 2026

(main) a

10

(main) b

passbyreference.cc

22

WA UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

What will happen when we try to compile and

run this code? , , , pollt cc.
void Foo(int& x, intx y, int z) {
A Z = *Y;
) X += 23
B. Output "(3,2,3)" y = &x;

}

C. Compiler error , L
int main(int argc, charxx argv) {
about arguments int a = 1;

to Foo (in main) LS
- b

D. Compiler error (. &b. O
Foo(a c);
about body of FOO| ctd::cout << (" << a << ", " << b

<< 1] 1] << << my n << td: . d'L.
E. We're lost... ’ c) Seels EIEhe
return EXIT_SUCCESS;

23

WA UNIVERSITY of WASHINGTON L10: References, Const, Classes

Lecture Outline (2/3)

& C++ References
+ constin C++

« C++ Classes Intro

CSE 333, Winter 2026

24

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const

%+ const: this cannot be changed/mutated
= Used much more in C++thanin C

= Signal of intent to compiler; meaningless at hardware level
- Results in compile-time errors

(void BrokenPrintSquare(const int& i) {)

i = 1i%xi; // compiler error here!
std::cout << i << std::endl;

}

int main(int argc, char*xx argv) {
int j = 2;
BrokenPrintSquare(j);
return EXIT_SUCCESS;

}

\. J

brokenpassbyrefconst.cc

25

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const and Pointers

\/
0’0

o0

Pointers can change data in two different contexts:

1) You can change the value of the pointer
(i.e., address stored)

2) You can change the thing the pointer points to
(via dereference)

const can be used to prevent either/both of these
behaviors!

= const next to pointer name means you can’t change the value of
the pointer

= const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

= Tip: read variable declaration from right-to-left

26

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const and Pointers Examples

+ The syntax with pointers is confusing:

(int main(int argc, charx* argv) {

int x = 5; // int

const int y = 6; // (const 1int)

y+t+;

const intx z = &y; // pointer to a (const int)

xz += 1,

Z++;

int* const w = &x; // (const pointer) to a (variable 1int)
*wW +=]_;

w++

b

const intx const v = &x; // (const pointer) to a (const int)
Vv += 1;

V++;

return EXIT_SUCCESS;
\} J

constmadness.cc ,;

W UNIVERSITY of WASHINGTON

const Parameters

« A const parameter
cannot be mutated inside
the function

" Therefore it does not
matter if the argument can
be mutated or not

< A non-const parameter
may be mutated inside
the function

= Compiler won’t let you
pass in const parameters

L10: References, Const, Classes

CSE 333, Winter 2026

]

S

=~

—

Make parameters const when you can!

U<

F

'LE

[void Foo(const 1intx y) {

std::cout << *y << std::endl;
}
void Bar(intx y) {

std::cout << *y << std::endl;

}

int main(int argc, char*x argv) {

const int a = 10;

int b = 20;

Foo(&a); // OK

Foo(&b) ; // OK

Bar (&a) ; // not OK - error
Bar (&b) ; // OK

return EXIT_SUCCESS;

29

WA UNIVERSITY of WASHINGTON

@ Poll Everywhere

L10: References, Const, Classes

CSE 333, Winter 2026

pollev.com/cse333a

What will happen when we try to compile and

run this code?

A.
B. Output "(2,4,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We're lost...

poll2.cc

r . L[]
void Foo(int* const x,

D

int& y, int z) {

>*

N < X
* +
noa

wN =

}

int main(int argc, charx*x argv) {
const int a = 1;
int b = 2, ¢ = 3;

Foo(&a, b, c);
std::cout << "(" << a << """ K b
<< "MK ¢ << ") K< std:endl;

return EXIT_SUCCESS;

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

]

(V5]
~
=
m

When to Use References?

=

-<‘-U’

+ A stylistic choice, not mandated by the C++ language
+» Google C++ style guide suggests:

" |nput parameters:
- Either use values (for primitive types like 1nt or small
structs/objects)
- Or use const references (for complex struct/object instances)

" Qutput parameters:
- Use const pointers

— Unchangeable pointers referencing changeable data
= Ordering:
- List input parameters first, then output parameters last

size_t StringBefore(const string& input, const string& search,
string* const result) {
xresult = input.substr(0, input.find(search));
return input.find(search);

} styleguide.cc]) 3

WA UNIVERSITY of WASHINGTON L10: References, Const, Classes

Lecture Outline (3/3)

& C++ References
&« constin C++

« C++ Classes Intro

CSE 333, Winter 2026

32

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Classes

+ Class definition syntax (in a . h file):

class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here
}; // class Name
_

"= Members can be functions (methods) or data (variables)

+ Class member function definition syntax (in a . cc file):

retType Name::MethodName(typel paraml, .., typeN paramN) {
// body statements

}

® (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

33

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Class Organization

+ It’s a little more complex than in C when modularizing
with struct definition:
= (Class definition is part of interface and should go in . h file
« Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details

- Common exception: setter and getter methods

" These files can also include non-member functions that use the
class

+ Unlike Java, you can name files anything you want
= Typically Name.cc and Name.h forclass Name

34

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

const & Classes

+ Like other data types, objects can be declared as const:

" Once a const object has been constructed, its member variables
can’t be changed

= Can only invoke member functions that are labeled const

+ You can declare a member function of a class as const

" This means that if cannot modify the object it was called on

- The compiler will treat member variables as const inside the
function at compile time

= |f a member function doesn’t modify the object, mark it const!

35

WA UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

]
Class Definition (. h file) ST

Point.h YV
[#9fndef POINT_H_)
#define POINT_H_
class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // inline member function
int get_y() const { return y_; } // inline member function
double Distance(const Point& p) const; // member function

void SetLocation(const int x, const 1int y); // member function

private:
int x_; // data member
int y_; // data member
}; // class Point

#tendif // POINT_H_

36

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Class Member Definitions (. cc file)

}

}

I

double Point::Distance(const Point& p) const {

// We can access p’s x_ and y_ variables either through the
// get_x(), get_y() accessor functions or the x_, y_ private
// member variables directly, since we’re in a member

// function of the same class.

double distance = (x_ - p.get_x()) » (x_ - p.get_x());
distance += (y_ - p.y_) * (y_ - p.y_);

return sqrt(distance);

void Point::SetLocation(const int x, const int y) {

X_ = X;

Y- =Y,

Point.cc
(#include <cmath> h
#include "Point.h"
Point::Point(const int x, const int y) {
X_ = X;
this->y_ =vy; // "this->" is optional unless name conflicts

37

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE 333, Winter 2026

Class Usage (. cc file)

usepoint.cc

7

#include <iostream>
#include <cstdlib>
#include

"Point.h"

using namespace std;

int main(int argc, char*xx argv) {

Point pl1(l, 2);
Point p2(4, 6);

cout
cout

cout
cout

cout

<<
<<

<<
<<

<<

"pl is: (" <<

pl.get_y() << ")" << endl;

"p2 ds: (" << p2.get_x() << ", ";
p2.get_y() << ")" << endl;

"dist : " << pl.Distance(p2) << endl;

return EXIT_SUCCESS;

// allocate a new Point on the Stack
// allocate a new Point on the Stack

pl.get_x() << ", ";

N\

38

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE 333, Winter 2026

Reading Assignment

\/
0’0

Before next time, read the sections in C++ Primer covering
class constructors, copy constructors, assignment
(operator=), and destructors

= Free link for UW students to the relevant section (§13.1.1)
 Click “Read now” and scroll down to “®@ Academic user?”

" |gnore “move semantics” for now

" The table of contents and index are your friends...

39

https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/ch13lev1sec1.html

	Slide 1: About how long did Exercises 7 and 8 take you? (two polls)
	Slide 2: Systems Programming C++ References, Const, Classes
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/3)
	Slide 5: Pointers Reminder (1/6)
	Slide 6: Pointers Reminder (2/6)
	Slide 7: Pointers Reminder (3/6)
	Slide 8: Pointers Reminder (4/6)
	Slide 9: Pointers Reminder (5/6)
	Slide 10: Pointers Reminder (6/6)
	Slide 11: References (1/6)
	Slide 12: References (2/6)
	Slide 13: References (3/6)
	Slide 14: References (4/6)
	Slide 15: References (5/6)
	Slide 16: References (6/6)
	Slide 17: Pass-By-Reference (1/6)
	Slide 18: Pass-By-Reference (2/6)
	Slide 19: Pass-By-Reference (3/6)
	Slide 20: Pass-By-Reference (4/6)
	Slide 21: Pass-By-Reference (5/6)
	Slide 22: Pass-By-Reference (6/6)
	Slide 23: What is your anticipated lecture/section attendance modality?
	Slide 24: Lecture Outline (2/3)
	Slide 25: const
	Slide 26: const and Pointers
	Slide 27: const and Pointers Examples
	Slide 29: const Parameters
	Slide 30: What is your anticipated lecture/section attendance modality?
	Slide 31: When to Use References?
	Slide 32: Lecture Outline (3/3)
	Slide 33: Classes
	Slide 34: Class Organization
	Slide 35: const & Classes
	Slide 36: Class Definition (.h file)
	Slide 37: Class Member Definitions (.cc file)
	Slide 38: Class Usage (.cc file)
	Slide 39: Reading Assignment

