
CSE 333, Winter 2026L09: C++ Intro

1

Which concept did you find the most difficult in 
the context of Homework 1?
A. Pointers

B. Output parameters

C. Dynamic memory allocation

D. Structs

E. GDB

F. Style considerations

G. Prefer not to say

pollev.com/cse333j



CSE 333, Winter 2026L09: C++ Intro

Systems Programming
C++ Intro
Systems Programming
C++ Intro

Instructors: 

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate



CSE 333, Winter 2026L09: C++ Intro

Relevant Course Information

❖ Exercise 8 released today, due Wednesday @ 11 AM

▪ First exercise in C++; Parallels to Exercise 0 

▪ Don’t use the --clint flag with the linter!

❖ Homework 2 released last Friday, due next Thursday (2/5)

▪ Fill out partner sign-up form by Thursday, 1/29 @ 11:59 PM

▪ Building a file search engine: (A) File Parser, (B) File Crawler & 
Indexer, and (C) Query Processor

• More details about data structures in Section this week

• Requires libhw1.a to be in hw1/ directory

▪ START EARLY – longer than Homework 1

3



CSE 333, Winter 2026L09: C++ Intro

Homework 2 Demo

❖ make produces two executables:

▪ test_suite runs unit tests on different parts of the project

▪ searchshell is the file search engine (need to finish all parts)

• Need to provide name of directory to crawl & index (we’ve given you 
test_tree/ for this)

▪ Can test expected behavior of searchshell using 
solution_binaries/searchshell

❖ Queries are words separated by spaces

▪ Returns ranked list of documents by naïve word count – 
documents must contain all words, but rank is just sum of 
individual word counts

▪ Used Ctrl-D to exit “gracefully,” Ctrl-C will not clean up resources

4



CSE 333, Winter 2026L09: C++ Intro

Today’s Goals

❖ An introduction to C++

▪ Give you a perspective on how to learn C++

▪ Kick the tires and look at some code

❖ Advice: Read related sections in the C++ Primer

▪ It’s hard to learn the “why is it done this way” from reference 
docs, and even harder to learn from random stuff on the web

▪ Lectures and examples will introduce the main ideas, but aren’t 
everything you’ll want need to understand

▪ Can access for free using SSO login with your UW email address 
on O’Reilly’s website: https://learning.oreilly.com/library/view/c-
primer-fifth/9780133053043/ 

5

https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/
https://learning.oreilly.com/library/view/c-primer-fifth/9780133053043/


CSE 333, Winter 2026L09: C++ Intro

Hello World in C

❖ You never had a chance to write this!

▪ Compile with gcc:  

▪ Based on what you know now, what is one thing that goes on 
behind the scenes in the execution of this “simple” program?

• Be detailed!

6

#include <stdio.h>    // for printf()
#include <stdlib.h>   // for EXIT_SUCCESS

int main(int argc, char** argv) {
  printf("Hello, World!\n");
  return EXIT_SUCCESS;
}

helloworld.c

gcc -Wall -g -std=c17 -o helloworld helloworld.c



CSE 333, Winter 2026L09: C++ Intro

Hello World in C++

❖ Looks simple enough…

▪ Compile with g++ instead of gcc:  

▪ What are some differences you notice in the C++ program 
compared to C?

❖ Let’s walk through the program step-by-step to highlight 
some differences

7

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

helloworld.cc



CSE 333, Winter 2026L09: C++ Intro

Hello World in C++ Unpacked (1/8)

❖ iostream is part of the C++ standard library

▪ You don’t add “.h” when including C++ standard library headers

• But you do for local headers (e.g., #include "ll.h")

▪ iostream declares stream object instances in the “std” 
namespace

• Callback: C++ supports classes and objects

• e.g., std::cin, std::cout, std::cerr

8

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc



CSE 333, Winter 2026L09: C++ Intro

Hello World in C++ Unpacked (2/8)

❖ cstdlib is the C standard library’s stdlib.h

▪ Nearly all C standard library functions are available to you

• For C header foo.h, you should #include <cfoo>

▪ We include it here for EXIT_SUCCESS, as usual

9

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc



CSE 333, Winter 2026L09: C++ Intro

Hello World in C++ Unpacked (3/8)

❖ std::cout is the “cout” object instance declared by 
iostream, living within the “std” namespace

▪ C++’s name for stdout

▪ std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/ 

▪ Used to format and write output to the console

▪ The entire standard library is in the namespace std

10

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc

http://www.cplusplus.com/reference/ostream/ostream/
http://www.cplusplus.com/reference/ostream/ostream/


CSE 333, Winter 2026L09: C++ Intro

Hello World in C++ Unpacked (4/8)

❖ C++ distinguishes between objects and primitive types

▪ These include the familiar ones from C:
char, short, int, long, float, double, etc.

▪ C++ also defines bool as a primitive type (woo-hoo!)

• Use it!

11

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc



CSE 333, Winter 2026L09: C++ Intro

Hello World in C++ Unpacked (5/8)

❖ “<<” is an operator defined by the C++ language

▪ Defined in C as well: usually it bit-shifts integers (in C/C++)

▪ C++ allows classes and functions to overload operators!

• Here, the ostream class overloads “<<”

• i.e., it defines different member functions (methods) that are invoked 
when an ostream is the left-hand side of the << operator

▪ Without the syntactic sugar/abstraction:

12

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc

std::cout.operator<<(char* c_str);



CSE 333, Winter 2026L09: C++ Intro

Hello World in C++ Unpacked (6/8)

❖ ostream has many different methods to handle <<

▪ The functions differ in the type of the right-hand side (RHS) of <<

▪ e.g., if you do std::cout << "foo"; , then C++ invokes 
cout’s function to handle << with RHS char*

13

std::cout << "foo";

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc



CSE 333, Winter 2026L09: C++ Intro

Hello World in C++ Unpacked (7/8)

❖ The ostream class’ member functions that handle << 
return a reference to themselves

▪ When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked

• It buffers the string "Hello, World!" for the console

• And it returns a reference to std::cout

▪ Synonymous to:

14

std::cout << "Hello, World!";

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc

std::cout.operator<<("Hello, World!");



CSE 333, Winter 2026L09: C++ Intro

Hello World in C++ Unpacked (8/8)

❖ Next, another member function on std::cout is 
invoked to handle << with RHS std::endl

▪ std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it 
is invoked on and then flushes the ostream’s buffer

• This enforces that something is printed to the console at this point

15

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc



CSE 333, Winter 2026L09: C++ Intro

Wow…

❖ You should be surprised and scared at this point

▪ C++ makes it easy to hide a significant amount of complexity

• It’s powerful, but really dangerous

• Once you mix everything together (templates, operator overloading, 
method overloading, generics, multiple inheritance), it can get really 
hard to know what’s actually happening!

16

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  std::cout << "Hello, World!" << std::endl;
  return EXIT_SUCCESS;
}

helloworld.cc



CSE 333, Winter 2026L09: C++ Intro

Let’s Refine It a Bit: String

❖ C++’s standard library has a std::string class

▪ Include the string header to use it

• Seems to be automatically included in iostream on CSE Linux 
environment (C++17) – but include it explicitly anyway if you use it

▪ http://www.cplusplus.com/reference/string/ 

17

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {
  string hello("Hello, World!");
  cout << hello << endl;
  return EXIT_SUCCESS;
}

helloworld2.cc

http://www.cplusplus.com/reference/string/
http://www.cplusplus.com/reference/string/


CSE 333, Winter 2026L09: C++ Intro

Let’s Refine It a Bit: Namespace (1/2)

❖ The using keyword introduces a namespace (or part of) 
into the current region

▪ using namespace std; imports all names from 
std::

▪ using std::cout; imports only std::cout 
(used as cout)

18

using namespace std;

using std::cout;

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {
  string hello("Hello, World!");
  cout << hello << endl;
  return EXIT_SUCCESS;
}

helloworld2.cc

STYLE
TIP



CSE 333, Winter 2026L09: C++ Intro

Let’s Refine It a Bit: Namespace (2/2)

❖ Benefits of importing namespaces

▪ We can now refer to std::string as string, std::cout 
as cout, and std::endl as endl

19

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <string>     // for string

using std::string;
using std::cout;
using std::endl;

int main(int argc, char** argv) {
  string hello("Hello, World!");
  cout << hello << endl;
  return EXIT_SUCCESS;
}

helloworld2.cc

STYLE
TIP

STYLE
TIP



CSE 333, Winter 2026L09: C++ Intro

Let’s Refine It a Bit: Scope

❖ Here we are instantiating a std::string object on the 
stack (an ordinary local variable)
▪ Passing the C string "Hello, World!" to its constructor 

method

▪ hello is deallocated (and its destructor invoked) when main 
returns

20

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {
  string hello("Hello, World!");
  cout << hello << endl;
  return EXIT_SUCCESS;
}

helloworld2.cc



CSE 333, Winter 2026L09: C++ Intro

Let’s Refine It a Bit: Operator Overloading

❖ The C++ string library also overloads the << operator

▪ Defines a function (not an object method) that is invoked when 
the LHS is ostream and the RHS is std::string

• http://www.cplusplus.com/reference/string/string/operator<</ 

21

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {
  string hello("Hello, World!");
  cout << hello << endl;
  return EXIT_SUCCESS;
}

helloworld2.cc

http://www.cplusplus.com/reference/string/string/operator%3c%3c/
http://www.cplusplus.com/reference/string/string/operator%3c%3c/


CSE 333, Winter 2026L09: C++ Intro

String Concatenation

❖ The string class overloads the “+” operator

▪ Creates and returns a new string that is the concatenation of the 
LHS and RHS

22

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {
  string hello("Hello");
  hello = hello + ", World!";
  cout << hello << endl;
  return EXIT_SUCCESS;
}

concat.cc

hello.operator+(", World!");



CSE 333, Winter 2026L09: C++ Intro

String Assignment

❖ The string class overloads the “=” operator

▪ Copies the RHS and replaces the string’s contents with it

23

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {
  string hello("Hello");
  hello = hello + ", World!";
  cout << hello << endl;
  return EXIT_SUCCESS;
}

concat.cc

hello.operator=(string);



CSE 333, Winter 2026L09: C++ Intro

String Manipulation

❖ This statement is complex!

▪ First “+” creates a string that is the concatenation of hello’s 
current contents and ", World!"

▪ Then “=” creates a copy of the concatenation to store in hello

▪ Without the syntactic sugar:

• hello.operator=(hello.operator+(", World!"));
24

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {
  string hello("Hello");
  hello = hello + ", World!";
  cout << hello << endl;
  return EXIT_SUCCESS;
}

concat.cc

hello.operator=(hello.operator+(", World!"));



CSE 333, Winter 2026L09: C++ Intro

Stream Manipulators

❖ iomanip defines a set of stream manipulator functions

▪ Pass them to a stream to affect formatting

• http://www.cplusplus.com/reference/iomanip/ 

• http://www.cplusplus.com/reference/ios/ 

25

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <iomanip>    // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {
  cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
  cout << hex << 16 << " " << 13 << endl;
  cout << dec << 16 << " " << 13 << endl;
  return EXIT_SUCCESS;
}

manip.cc

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/
http://www.cplusplus.com/reference/ios/


CSE 333, Winter 2026L09: C++ Intro

Stream Manipulators

❖ setw(x) sets the width of the next field to x

▪ Only affects the next thing sent to the output stream (i.e., it is 
not persistent)

26

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <iomanip>    // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {
  cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
  cout << hex << 16 << " " << 13 << endl;
  cout << dec << 16 << " " << 13 << endl;
  return EXIT_SUCCESS;
}

manip.cc



CSE 333, Winter 2026L09: C++ Intro

Stream Manipulators

❖ hex, dec, and oct set the numerical base for integers 
output to the stream

▪ Stays in effect until you set the stream to another base (i.e., it is 
persistent)

27

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS
#include <iomanip>    // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {
  cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
  cout << hex << 16 << " " << 13 << endl;
  cout << dec << 16 << " " << 13 << endl;
  return EXIT_SUCCESS;
}

manip.cc



CSE 333, Winter 2026L09: C++ Intro

C and C++

❖ C is (roughly) a subset of C++

▪ You can still use printf – but bad style in ordinary C++ code

• e.g., Use std::cerr instead of fprintf(stderr, …)

▪ Can mix C and C++ idioms if needed to work with existing code, 
but avoid mixing if you can

• Use C++(17)

28

#include <cstdio>     // for printf
#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {
  printf("Hello from C!\n");
  return EXIT_SUCCESS;
}

helloworld3.cc

STYLE
TIP



CSE 333, Winter 2026L09: C++ Intro

Reading

❖ std::cin is an object instance of class istream

▪ Supports the >> operator for “extraction”

• Can be used in conditionals: (std::cin>>num) is true if 
successful

▪ Has a getline() method and methods to detect & clear errors

▪ Useful for Exercise 8
29

#include <iostream>   // for cout, endl
#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main(int argc, char** argv) {
  int num;
  cout << "Type a number: ";
  cin >> num;
  cout << "You typed: " << num << endl;
  return EXIT_SUCCESS;
}

echonum.cc



CSE 333, Winter 2026L09: C++ Intro

30

How many different versions of << are called?
▪ Ignore the stream manipulators for now

▪ Also, what is output?

A. 1

B. 2

C. 3

D. 4

E. We’re lost…

#include <iostream>
#include <cstdlib>
#include <string>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
  int n = 172;
  string str("m");
  str += "y";
  cout << str << hex << setw(2)
       << 15U << n << "e!" << endl;
  return EXIT_SUCCESS;
}

msg.cc

pollev.com/cse333j



CSE 333, Winter 2026L09: C++ Intro

Extra Exercise #1

❖ Write a C++ program that uses stream to:

▪ Prompt the user to type 5 floats

▪ Prints them out in opposite order with 4 digits of precision

31


	Slide 1: Which concept did you find the most difficult in the context of Homework 1?
	Slide 2: Systems Programming C++ Intro
	Slide 3: Relevant Course Information
	Slide 4: Homework 2 Demo
	Slide 5: Today’s Goals
	Slide 6: Hello World in C
	Slide 7: Hello World in C++
	Slide 8: Hello World in C++ Unpacked (1/8)
	Slide 9: Hello World in C++ Unpacked (2/8)
	Slide 10: Hello World in C++ Unpacked (3/8)
	Slide 11: Hello World in C++ Unpacked (4/8)
	Slide 12: Hello World in C++ Unpacked (5/8)
	Slide 13: Hello World in C++ Unpacked (6/8)
	Slide 14: Hello World in C++ Unpacked (7/8)
	Slide 15: Hello World in C++ Unpacked (8/8)
	Slide 16: Wow…
	Slide 17: Let’s Refine It a Bit: String
	Slide 18: Let’s Refine It a Bit: Namespace (1/2)
	Slide 19: Let’s Refine It a Bit: Namespace (2/2)
	Slide 20: Let’s Refine It a Bit: Scope
	Slide 21: Let’s Refine It a Bit: Operator Overloading
	Slide 22: String Concatenation
	Slide 23: String Assignment
	Slide 24: String Manipulation
	Slide 25: Stream Manipulators
	Slide 26: Stream Manipulators
	Slide 27: Stream Manipulators
	Slide 28: C and C++
	Slide 29: Reading
	Slide 30: How many different versions of << are called?
	Slide 31: Extra Exercise #1

