
CSE 333, Winter 2026L08: Makefiles, C++ Preview

1

Name a value that you feel is embedded in
the C language.

(open-ended survey question)

By “value” we mean an adjective describing the relative
worth, merit, or importance of something (e.g., loyalty,
kindess), NOT a number or constant.

pollev.com/cse333j

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Systems Programming
Makefiles, C++ Preview
Systems Programming
Makefiles, C++ Preview

Instructors:

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Relevant Course Information

❖ No more leniency with assignment submission – messed
up tag or file locations = no submission

❖ Exercise 7 posted Wednesday, due Monday

▪ Read a directory and open/copy text files found there

❖ Homework 1 due last night (1/22)

▪ Check for HW upload error email – time to fix during late window

▪ Late days: can still tag a commit made until the end of Sunday

❖ Homework 2 is released today

▪ See Ed post #236 for partner sign-up & matching forms

▪ Builds on top of Homework 1 data structures to create search
engine!

3

https://edstem.org/us/courses/89933/discussion/7539167
https://edstem.org/us/courses/89933/discussion/7539167
https://edstem.org/us/courses/89933/discussion/7539167
https://edstem.org/us/courses/89933/discussion/7539167

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Lecture Outline (1/4)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

4

CSE 333, Winter 2026L08: Makefiles, C++ Preview

make

❖ make is a classic program for controlling what gets
(re)compiled and how

▪ Many other such programs exist (e.g., ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

5

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Building Software (1/2)

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

6

https://xkcd.com/303/

https://xkcd.com/303/

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Building Software (2/2)

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time:

• Use up-arrow or history: (still retype after logout)

• Have an alias or bash script:

• Have a Makefile: (you’re ahead of us)

7

CSE 333, Winter 2026L08: Makefiles, C++ Preview

“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set
of) command(s) that are all run every time you change
anything. To do things “smarter,” consider:
1) It could be worse: If gcc didn’t combine steps for you, you’d need to

preprocess, compile, and link on your own (along with anything you
used to generate the C files)

2) Source files could have multiple outputs (e.g., javadoc). You may
have to type out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you
distribute source code; make it relatively simple for others to build

4) You don’t want to recompile everything every time you change
something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but
4 is trickier

8

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is
a dependency dag (directed, acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a
command 𝑐 that directly or indirectly uses the sources

▪ It 𝑡 is newer than every source (file-modification times), assume
there is no reason to rebuild it

▪ Recursive building: if some source 𝑠𝑖 is itself a target for some
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!

9

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Theory Applied to C (1/4)

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

10

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Theory Applied to C (2/4)

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

11

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Theory Applied to C (3/4)

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

❖ Creating an executable (“linking”) depends on .o files and
archives

▪ Archives linked by -L<path> -l<name>
(e.g., -L. -lfoo to get libfoo.a from current directory)

12

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Theory Applied to C (4/4)

❖ Effects of code changes:

▪ If one .c file changes, just need to recreate one .o file, maybe a
library, and re-link

▪ If a .h file changes, may need to rebuild more

▪ Many more possibilities!

13

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Lecture Outline (2/4)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

14

CSE 333, Winter 2026L08: Makefiles, C++ Preview

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

15

foo.o: foo.c foo.h bar.h
 gcc -Wall -o foo.o -c foo.c

target: sources
 command← Tab →

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Using make

❖ Defaults:

▪ If no -f specified, use a file named Makefile in current dir

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

16

$ make -f <makefileName> target

CSE 333, Winter 2026L08: Makefiles, C++ Preview

“Phony” Targets

❖ A make target whose command does not create a file of
the target’s name (i.e., a “recipe”)

▪ As long as target file doesn’t exist, the command(s) will be
executed because the target must be “remade”

❖ e.g., target clean is a convention to remove generated
files to “start over” from just the source

❖ e.g., target all is a convention to build all “final
products” in the makefile

▪ Lists all of the “final products” as sources

17

clean:
 rm foo.o bar.o baz.o widget *~

CSE 333, Winter 2026L08: Makefiles, C++ Preview

“all” Example (make or make all)

18

all: prog B.class someLib.a
 # notice no commands this time

prog: foo.o bar.o main.o
 gcc –o prog foo.o bar.o main.o

B.class: B.java
 javac B.java

someLib.a: foo.o baz.o
 ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h
 gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

1

2

3

4

5 6

7 8

CSE 333, Winter 2026L08: Makefiles, C++ Preview

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or
whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

• It’s common to use variables to hold lists of filenames

▪ Can also specify/overwrite variables on the command line:
(e.g., make CC=clang CFLAGS=-g) 19

CC = gcc
CFLAGS = -Wall -std=c17
OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)
 $(CC) $(CFLAGS) -o widget $(OBJFILES)

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Makefile Writing Tips

❖ When creating a Makefile, first draw the dependencies!!!!

❖ C Dependency Rules:

▪ .c and .h files are never targets, only sources

▪ Each .c file will be compiled into a corresponding .o file

• Header files will be implicitly used via #include

▪ Executables will typically be built from one or more .o file

❖ Good Conventions:

▪ Include a clean rule

▪ If you have more than one “final target,” include an all rule

▪ The first/top target should be your singular “final target” or all

20

STYLE
TIP

STYLE
TIP

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Writing a Makefile Example: DAG

❖ “talk” program (find files on web with lecture slides)

21

speak.cspeak.h shout.cshout.hmain.c

#include "speak.h"
#include "shout.h"

int main(int argc, char** argv) {…

#include "speak.h"
...

#include "speak.h"
#include "shout.h"
...

main.c

speak.c

shout.c

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Writing a Makefile Example: Makefile

❖ “talk” program (find files on web with lecture slides)

22

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk
<target>: <sources>
 <command>

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Revenge of the Funny Characters

❖ Special variables:

▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

23

CC and CFLAGS defined above
widget: foo.o bar.o
 $(CC) $(CFLAGS) -o $@ $^
foo.o: foo.c foo.h bar.h
 $(CC) $(CFLAGS) -c $<

CSE 333, Winter 2026L08: Makefiles, C++ Preview

And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than
writing your own (until some day…)

24

%.class: %.java
 javac $< # we need the $< here

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Lecture Outline (3/4)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

25

CSE 333, Winter 2026L08: Makefiles, C++ Preview

26

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Development of the C Language (1/3)

❖ Created in 1972

▪ BCPL → B → C

▪ Designed specifically as a system programming language for Unix

• Unix was rewritten entirely in C (Version 4 in 1973)

❖ “Standardized” in 1978 with release of K&R Ed. 1

▪ From initial creation, developed
 in terms of portability and type safety

❖ Formal standardization via American National
Standards Institute (ANSI) in 1989 and International
Organziation for Standardization (ISO) in 1990

▪ Non-portable portion of the Unix C library was the basis for the
POSIX standard via IEEE

27

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Development of the C Language (2/3)

❖ Development Context:

▪ Developed for the PDP-7/PDP-11

• Very limited memory available for program

▪ Improvements over B: data typing, performance, byte
addressibility

▪ Developed in the context of operating system innovations
(Multics, Unix)

• “Particularly oriented towards system programming, are small and
compactly described, and are amenable to translation by simple
compilers.”

• “By design, C provides constructs that map efficiently to typical
machine instructions. It has found lasting use in applications
previously coded in assembly language.”

❖ Who used computers and programming at the time?
28

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Development of the C Language (3/3)

❖ Credits:

▪ Dennis Ritchie designed C

▪ Ken Thompson designed B and, with Ritchie, were the primary
architects of UNIX (in assembly)

▪ Brian Kernighan helped Ritchie write K&R, the first
“standardization” of the C language

❖ “The development of the C language” (https://dl.acm.org/doi/10.1145/155360.155580)

29

Dennis
Ritchie

Ken
Thompson

Brian
Kernighan

https://dl.acm.org/doi/10.1145/155360.155580

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Principles of C

❖ Some commonly-held contemporary views:

▪ “Since C is relatively small, it can be described
in small space and learned quickly.”

▪ “Shows what’s really happening.”

▪ “Close to the machine/hardware.”

▪ “Only the bare essentials.”

▪ “No one to help you.”

▪ “You’re on your own.”

▪ “I know what I’m doing, get out of my way.”

30

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Principles of C – Embedded Values

❖ Some commonly-held contemporary views:

▪ “Since C is relatively small, it can be described
in small space and learned quickly.”

▪ “Shows what’s really happening.”

▪ “Close to the machine/hardware.”

▪ “Only the bare essentials.”

▪ “No one to help you.”

▪ “You’re on your own.”

▪ “I know what I’m doing, get out of my way.”

31

Rugged

Minimalistic

Individualistic

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Lecture Outline (4/4)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

32

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Programming Terminology Review

❖ Encapsulation and Abstraction: Hiding implementation
details (restricting access) and associating behaviors
(methods) with data

❖ Polymorphism: The provision of a single interface to
entities of different types

❖ Generics: Algorithms written in terms of types to-be-
specified-later

33

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Encapsulation and Abstraction (C)

❖ Used header file conventions and the static specifier to
separate “private” functions, definitions, and constants
from “public”

❖ Used forward-declared structs and opaque pointers
(i.e., void*) to hide implementation-specific details

❖ Can’t associate behaviors with encapsulated state

▪ Functions that operate on a LinkedList not actually tied to
the struct

34

Really difficult to mimic – implemented primarily via
coding conventions

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Encapsulation and Abstraction (C++)

❖ Support for classes and objects!

▪ Public, private, and protected access specifiers

▪ Methods and instance variables ("this")

▪ (Multiple!) inheritance

❖ Polymorphism

▪ Static polymorphism: multiple functions or methods with the
same name, but different argument types (overloading)

• Works for all functions, not just class members

▪ Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

35

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Generics (C)

❖ Generic linked list and hash table by using void* payload

❖ Function pointers to generalize different behavior for data
structures

▪ Comparisons, deallocation, pickling up state, etc.

36

Emulated generic data structures primarily by
disabling type system

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Generics (C++)

❖ Templates facilitate generic data types

▪ Parametric polymorphism: same idea as Java generics, but
different in details, particularly implementation

• A vector of ints: vector<int> x;

• A vector of floats: vector<float> x;

• A vector of (vectors of floats): vector<vector<float>> x;

❖ Specialized casts to increase type safety

37

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Namespaces (C)

❖ Names are global and visible everywhere

▪ Can use static to prevent a name from being visible outside a
source file (as close as C gets to “private”)

❖ Naming conventions help avoid collisions in the global
namespace

▪ e.g., LinkedList_Allocate, HTIterator_Next, etc.

38

Avoid collisions primarily via coding conventions

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Namespaces (C++)

❖ Explicit namespaces!

▪ The linked list module could define an “LL” namespace while the
hash table module could define an “HT” namespace

▪ Both modules could define an Iterator class

• One would be globally named LL::Iterator and the other would
be globally named HT::Iterator

❖ Classes also allow duplicate names without collisions

▪ Classes can also define their own pseudo-namespace, very similar
to Java static inner classes

39

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Standard Library (C)

❖ C does not provide any standard data structures

▪ We had to implement our own linked list and hash table

❖ Hopefully, you can use somebody else’s libraries

▪ But C’s lack of abstraction, encapsulation, and generics means
you’ll probably end up tweak them or tweak your code to use
them

40

YOU implement the data structures that you need

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Standard Library (C++)

❖ Generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

▪ And iterators for most of these

❖ A string class: hides the implementation of strings

❖ Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

❖ Generic algorithms: sort, filter, remove duplicates, etc.

41

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Error Handling (C)

❖ Error handling is a pain

❖ Define error codes and return them

▪ Either directly return or via a “global” like errno

▪ No type checking: does 1 mean EXIT_FAILURE or true?

❖ Customers and implementors need to constantly test
return values

▪ e.g., if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

42

Error handling is a pain – mixture of coding
conventions and discipline

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Error Handling (C++)

❖ Supports exceptions!

▪ try / throw / catch

▪ If used with discipline, can simplify error processing

▪ If used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, you might not get a
chance to clean up resources allocated inside b()

❖ We will largely avoid in 333

▪ You still benefit from having more interpretable errors!

▪ But much C++ code still needs to work with C & old C++ libraries,
so still uses return codes, exit(), etc.

43

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Some Tasks Still Hurt in C++ (1/2)

❖ Memory management

▪ C++ has no garbage collector

• You still have to manage memory allocation & deallocation and track

• It’s still possible to have leaks, double frees, and so on

▪ But there are some things that help

• “Smart pointers”

– Classes that encapsulate pointers and track reference counts

– Deallocate memory when the reference count goes to zero

• C++’s constructors and destructors permit a pattern known as
“Resource Allocation Is Initialization” (RAII)

– Useful for releasing memory, locks, database transactions, etc.

44

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Some Tasks Still Hurt in C++ (2/2)

❖ C++ doesn’t guarantee type or memory safety

▪ You can still:

• Forcibly cast pointers between incompatible types

• Walk off the end of an array and smash memory

• Have dangling pointers

• Conjure up a pointer to an arbitrary address of your choosing

45

CSE 333, Winter 2026L08: Makefiles, C++ Preview

How to Think About C++

46

Set of styles
and ways to

use C++

Set of styles
and ways to

use C

Good styles
and robust
engineering

practices

Style
guides

CSE 333, Winter 2026L08: Makefiles, C++ Preview

Or…

47

In the hands of a
disciplined programmer,

C++ is a powerful tool

But if you’re not so
disciplined about how you

use C++…

	Slide 1: Name a value that you feel is embedded in the C language.
	Slide 2: Systems Programming Makefiles, C++ Preview
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/4)
	Slide 5: make
	Slide 6: Building Software (1/2)
	Slide 7: Building Software (2/2)
	Slide 8: “Real” Build Process
	Slide 9: Recompilation Management
	Slide 10: Theory Applied to C (1/4)
	Slide 11: Theory Applied to C (2/4)
	Slide 12: Theory Applied to C (3/4)
	Slide 13: Theory Applied to C (4/4)
	Slide 14: Lecture Outline (2/4)
	Slide 15: make Basics
	Slide 16: Using make
	Slide 17: “Phony” Targets
	Slide 18: “all” Example (make or make all)
	Slide 19: make Variables
	Slide 20: Makefile Writing Tips
	Slide 21: Writing a Makefile Example: DAG
	Slide 22: Writing a Makefile Example: Makefile
	Slide 23: Revenge of the Funny Characters
	Slide 24: And more…
	Slide 25: Lecture Outline (3/4)
	Slide 26
	Slide 27: Development of the C Language (1/3)
	Slide 28: Development of the C Language (2/3)
	Slide 29: Development of the C Language (3/3)
	Slide 30: Principles of C
	Slide 31: Principles of C – Embedded Values
	Slide 32: Lecture Outline (4/4)
	Slide 33: Programming Terminology Review
	Slide 34: Encapsulation and Abstraction (C)
	Slide 35: Encapsulation and Abstraction (C++)
	Slide 36: Generics (C)
	Slide 37: Generics (C++)
	Slide 38: Namespaces (C)
	Slide 39: Namespaces (C++)
	Slide 40: Standard Library (C)
	Slide 41: Standard Library (C++)
	Slide 42: Error Handling (C)
	Slide 43: Error Handling (C++)
	Slide 44: Some Tasks Still Hurt in C++ (1/2)
	Slide 45: Some Tasks Still Hurt in C++ (2/2)
	Slide 46: How to Think About C++
	Slide 47: Or…

