WA UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

0 PO" EveryWhere pollev.com/cse333;j b

Name a value that you feel is embedded in
the C language.

(open-ended survey question)

By “value” we mean an adjective describing the relative
worth, merit, or importance of something (e.g., loyalty,
kindess), NOT a number or constant.

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview

CSE 333, Winter 2026

Systems Programming

Makefiles, C++ Preview

Instructors:
Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson
Grace Zhou Jackson Kent Janani Raghavan
Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Relevant Course Information

» No more leniency with assignment submission — messed
up tag or file locations = no submission

» Exercise 7 posted Wednesday, due Monday

" Read a directory and open/copy text files found there

» Homework 1 due last night (1/22)

" Check for HW upload error email — time to fix during late window
= Late days: can still tag a commit made until the end of Sunday

- Homework 2 is released today
= See Ed post #236 for partner sign-up & matching forms

= Builds on top of Homework 1 data structures to create search
engine!

https://edstem.org/us/courses/89933/discussion/7539167
https://edstem.org/us/courses/89933/discussion/7539167
https://edstem.org/us/courses/89933/discussion/7539167
https://edstem.org/us/courses/89933/discussion/7539167

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview

Lecture Outline (1/4)

J/
>

+ Make and Build Tools
«» Makefile Basics
+» C History

& C++ Preview

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

make

+» make is a classic program for controlling what gets
(re)compiled and how

= Many other such programs exist (e.g., ant, maven, IDE “projects”)

+» make has tons of fancy features, but only two basic ideas:
1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

+» To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts...

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Building Software (1/2)

+» Programmers spend a lot of time “building”
" Creating programs from source code
= Both programs that they write and other people write

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.

HEY! GETBACK Y™
TO WORK!

7

CUNP@

https://xkcd.com/303/

https://xkcd.com/303/

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Building Software (2/2)

+» Programmers spend a lot of time “building”

" Creating programs from source code

= Both programs that they write and other people write

+» Programmers like to automate repetitive tasks
= Repetitive: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

- Retype this every time:

- Use up-arrow or history:

- Have an alias or bash script:

- Have a Makefile:

L
= (still retype after logout)

\\J

~~n

—~ (you’re ahead of us)

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

“Real” Build Process

On larger projects, you can’t or don’t want to have one big (set
of) command(s) that are all run every time you change
anything. To do things “smarter,” consider:

1) It could be worse: If gcc didn’t combine steps for you, you’d need to
preprocess, compile, and link on your own (along with anything you
used to generate the C files)

2) Source files could have multiple outputs (e.g., javadoc). You may
have to type out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you
distribute source code; make it relatively simple for others to build

4) You don’t want to recompile everything every time you change
something (especially if you have 10°-10/ files of source code)

» A script can handle 1-3 (use a variable for filenames for 2), but

4 is trickier

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Recompilation Management

+ The “theory” behind avoiding unnecessary compilation is
a dependency dag (directed, acyclic graph)

+~ To create a target t, you need sources sq, S, ..., S, and a
command ¢ that directly or indirectly uses the sources

" |t tis newer than every source (file-modification times), assume
there is no reason to rebuild it

= Recursive building: if some source s; is itself a target for some
other sources, see if it needs to be rebuilt...

= Cycles “make no sense”!

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Theory Applied to C (1/4)

[foo.h] [foo.c] [bar.c]Sourcefiles

\\
Statically-linked [l'in.e{: foo?[bar.o] Object files

libraries

bar Executable

+» Compilinga .c createsa .0 —the .0 dependsonthe .c
and all included files (. h, recursively/transitively)

10

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Theory Applied to C (2/4)

[foo.h] [foo.c [bar.c]Sourcefiles

\\
Statically-linked ['L'in.E{: 1COOO\[bar o)] Object files

libraries

ba r Executable

» Compilinga .c createsa .0 —the .o dependsonthe .c
and all included files (. h, recursively/transitively)

+» An archive (library, . a) depends on included . o files

11

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Theory Applied to C (3/4)

[foo.h] [foo.c [bar.c]Sourcefiles

\\
Statically-linked [1ibZ.a] L fooo\[bar o] Object files
libraries AW

ba r Executable

» Compilinga .c createsa .0 —the .o dependsonthe .c
and all included files (. h, recursively/transitively)

» An archive (library, . a) depends on included . o files

» Creating an executable (“linking”) depends on . o files and
archives

= Archives linked by -L<path> -1<name>
(e.g., -L. —-1footoget libfoo.a from current directory)

12

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Theory Applied to C (4/4)

[foo.h] [foo.c] [bar.c]Sourcefiles

\\
Statically-linked ['L'in.E{: 1COOO\[bar o)] Object files

libraries

ba r Executable

+ Effects of code changes:

= |f one . c file changes, just need to recreate one . o file, maybe a
library, and re-link

= |fa .h file changes, may need to rebuild more
= Many more possibilities!

13

WA UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview

Lecture Outline (2/4)

J/
>

+ Make and Build Tools
«» Makefile Basics
+» C History

& C++ Preview

CSE 333, Winter 2026

14

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

make Basics

+ A makefile contains a bunch of triples:

target: sources
«Tab= command

" Colon after target is required
" Command lines must start with a TAB, NOT SPACES

= Multiple commands for same target are executed in order
- Can split commands over multiple lines by ending lines with “\’

+» Example: [foo.0: foo.c foo.h bar.h
gcc -Wall -o foo.o -c foo.c

15

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Using make

S make -f <makefileName> target

« Defaults:

" |f no —T specified, use a file named Makef1 le in current dir
" If no target specified, will use the first one in the file

= Will interpret commands in your default shell
- Set SHELL variable in makefile to ensure

+ Target execution:

" Check each source in the source list:

- If the source is a target in the makefile, then process it recursively
- |f some source does not exist, then error

- If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

16

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

“Phony” Targets

+~ A make target whose command does not create a file of
the target’s name (i.e., a “recipe”)

= As long as target file doesn’t exist, the command(s) will be
executed because the target must be “remade”

+ e.g., target clean is a convention to remove generated
files to “start over” from just the source

clean:
rm foo.o bar.o baz.o widget *~

+» e.g., target all is a convention to build all “final
products” in the makefile

= Lists all of the “final products” as sources

17

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview

“all” Example (make or make all)
5 @

CSE 333, Winter 2026

prog B.class somelLib.a—
2 # notice no commands this time
4
foo.o bar.o main.o

gcc -o prog foo.o bar.o main.o

// B.class: B.java
javac B.java

_

someLib.a:.{bo.o baz.o
ar r foo.o baz.o

©

»f00.0: foo.c foo.h headerl.h header2.h
gcc —¢ -Wall foo.c

\# similar targets for bar.o, main.o, baz.o, etc...

18

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

make Variables

« You can define variables in a makefile:

= All values are strings of text, no “types”
® Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or
whitespace

+ Example: (cc = gcc
CFLAGS = -Wall -std=cl7
OBJFILES = foo.o bar.o baz.o
widget: S(OBJFILES)

$(CC) S(CFLAGS) -o widget $(OBJFILES) |

\.

+» Advantages:

= Easy to change things (especially in multiple commands)
- It’s common to use variables to hold lists of filenames

= Can also specify/overwrite variables on the command line:
(e.g., make CC=clang CFLAGS=-g) 15

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Makefile Writing Tips Tt
« When creating a Makefile, first draw the dependencies!!!!

+» C Dependency Rules:
= .cand .h filesare never targets, only sources

= Each . c file will be compiled into a corresponding . o file
- Header files will be implicitly used via #1nclude

= Executables will typically be built from one or more . o file

+» Good Conventions:
" |ncludeacleanrule
= |f you have more than one “final target,” include an all rule
" The first/top target should be your singular “final target” or all

20

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Writing a Makefile Example: DAG

+« “talk” program (find files on web with lecture slides)

[main.c] [speak.h] [speak.c] [shout.h] [shout.c]

speak.c
main.c #include "speak.h"
#include "speak.h"
#include "shout.h" shout.c
#include "speak.h"
int main(int argc, charx* argv) f{.. #include "shout.h"
21

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Writing a Makefile Example: Makefile

+« “talk” program (find files on web with lecture slides)

[main.c] [speak.h] [speak.c] shout.h] [shout.c]
\

[main.o] Lspeak.o: shout.o]

<target>: <sources> \ - /
talk

<command>

22

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Revenge of the Funny Characters

+ Special variables:
= $@ for target name
= $A forall sources
= $< for left-most source
= |Lots more! —see the documentation

» Examples: ~

(# CC and CFLAGS defined above
widget: foo.o bar.o

S(CC) S(CFLAGS) -o S$S@ s/
foo.0: foo.c foo.h bar.h

g $(CC) $(CFLAGS) -c $<)

23

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

And more...

« There are a lot of “built-in” rules — see documentation

>

>

» There are “suffix” rules and “pattern” rules

" Example: (o c1ass: %.java
javac $< # we need the S< here

+» Remember that you can put any shell command — even
whole scripts!

+ You can repeat target names to add more dependencies

« Often this stuff is more useful for reading makefiles than
writing your own (until some day...)

24

WA UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview

Lecture Outline (3/4)

J/
>

+ Make and Build Tools
« Makefile Basics
+» C History

& C++ Preview

CSE 333, Winter 2026

25

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ﬁ

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Development of the C Language (1/3)

+ Created in 1972
= BCPL->B—-C
" Designed specifically as a system programming language for Unix
« Unix was rewritten entirely in C (Version 4 in 1973)

» “Standardized” in 1978 with release of K&R Ed. 1

" From initial creation, developed
in terms of portability and type safety PR ANCUAGE

» Formal standardization via American National
Standards Institute (ANSI) in 1989 and International
Organziation for Standardization (ISO) in 1990

= Non-portable portion of the Unix C library was the basis for the
POSIX standard via IEEE

27

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Development of the C Language (2/3)

+» Development Context:

= Developed for the PDP-7/PDP-11
- Very limited memory available for program

" |mprovements over B: data typing, performance, byte
addressibility

= Developed in the context of operating system innovations
(Multics, Unix)

- “Particularly oriented towards system programming, are small and
compactly described, and are amenable to translation by simple
compilers.”

- “By design, C provides constructs that map efficiently to typical
machine instructions. It has found lasting use in applications
previously coded in assembly language.”

+» Who used computers and programming at the time?

28

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Development of the C Language (3/3)

+ Credits:
= Dennis Ritchie designed C

= Ken Thompson designed B and, with Ritchie, were the primary
architects of UNIX (in assembly)

= Brian Kernighan helped Ritchie write K&R, the first
“standardization” of the C language

“The development of the C language” (https://dl.acm.org/doi/10.1145/155360.155580)

Ken Dennis Brian
Thompson Ritchie Kernighan 29

https://dl.acm.org/doi/10.1145/155360.155580

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview

Principles of C

+» Some commonly-held contemporary views:

= “Since Cis relatively small, it can be described
in small space and learned quickly.”

= “Shows what’s really happening.”

= “Close to the machine/hardware.”

= “Only the bare essentials.”

"= “No one to help you.”

= “You’re on your own.”

= “l know what I’'m doing, get out of my way.”

CSE 333, Winter 2026

30

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview

CSE 333, Winter 2026

Principles of C — Embedded Values

+» Some commonly-held contemporary views:

= “Since C is relatively small, it can be described |

in small space and learned quickly.”
= “Shows what’s really happening.”
= “Close to the machine/hardware.”
= “Only the bare essentials.”)
= “No one to help you.” — Rugged

= “You’re on your own.”

—

= “l know what I’'m doing, get out of my way.”

— Minimalistic

:|> Individualistic

31

WA UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview

Lecture Outline (4/4)

J/
>

» Make and Build Tools
+» Makefile Basics

+» C History

2 C++ Preview

CSE 333, Winter 2026

32

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Programming Terminology Review

+ Encapsulation and Abstraction: Hiding implementation
details (restricting access) and associating behaviors
(methods) with data

+~ Polymorphism: The provision of a single interface to
entities of different types

» @enerics: Algorithms written in terms of types to-be-
specified-later

33

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Encapsulation and Abstraction (C)

» Used header file conventions and the stat1c specifier to
separate “private” functions, definitions, and constants
from “public”

» Used forward-declared structs and opaque pointers
(i.e., vo1d*) to hide implementation-specific details

» Can’t associate behaviors with encapsulated state

" Functions that operate on a LinkedL1st not actually tied to
the struct

Really difficult to mimic — implemented primarily via

coding conventions

34

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Encapsulation and Abstraction (C++)

+ Support for classes and objects!
= Public, private, and protected access specifiers
" Methods and instance variables ("this")
= (Multiple!) inheritance

+ Polymorphism

= Static polymorphism: multiple functions or methods with the
same name, but different argument types (overloading)

- Works for all functions, not just class members

= Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

35

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Generics (C)

» Generic linked list and hash table by using vo1dx* payload
» Function pointers to generalize different behavior for data

structures

= Comparisons, deallocation, pickling up state, etc.

Emulated generic data structures primarily by

disabling type system

36

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Generics (C++)

+» Templates facilitate generic data types

" Parametric polymorphism: same idea as Java generics, but
different in details, particularly implementation
- Avector of ints: vector<int> x;
- Avector of floats: vector<float> x;
- Avector of (vectors of floats): vector<vector<float>> x;

+ Specialized casts to increase type safety

37

WA UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Namespaces (C)

+» Names are global and visible everywhere

= Canuse static to prevent a name from being visible outside a
source file (as close as C gets to “private”)

+» Naming conventions help avoid collisions in the global
namespace
" e.g,LinkedList_Allocate, HTIterator_Next, etc.

Avoid collisions primarily via coding conventions

38

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Namespaces (C++)

+» Explicit namespaces!

" The linked list module could define an “LL” namespace while the
hash table module could define an “HT” namespace

= Both modules could define an Iterator class

- One would be globally named LL: : Iterator and the other would
be globally named HT: : Iterator

+ Classes also allow duplicate names without collisions

= (Classes can also define their own pseudo-namespace, very similar
to Java static inner classes

39

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Standard Library (C)

+» C does not provide any standard data structures

= We had to implement our own linked list and hash table

+ Hopefully, you can use somebody else’s libraries

= But C’s lack of abstraction, encapsulation, and generics means

you’ll probably end up tweak them or tweak your code to use
them

YOU implement the data structures that you need

40

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Standard Library (C++)

’0

+ @eneric containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

= And iterators for most of these

’0

L)

» A string class: hides the implementation of strings

Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

L)

0’0

L)

0’0

Generic algorithms: sort, filter, remove duplicates, etc.

41

WA UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Error Handling (C)

+ Error handling is a pain

+ Define error codes and return them
= Either directly return or via a “global” like errno
"= No type checking: does 1 mean EXIT_FAILURE or true?

+» Customers and implementors need to constantly test
return values

= e.g., ifa() callsb(), which calls c ()

- adepends on b to propagate an error in c back to it

Error handling is a pain — mixture of coding

conventions and discipline

42

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Error Handling (C++)

+» Supports exceptions!
= try/throw/catch
= |f used with discipline, can simplify error processing

" |f used carelessly, can complicate memory management

-« Consider: a() calls b(), which calls c ()

— If ¢ () throws an exception that b () doesn’t catch, you might not get a
chance to clean up resources allocated inside b ()

+» We will largely avoid in 333
" You still benefit from having more interpretable errors!

® But much C++ code still needs to work with C & old C++ libraries,
so still uses return codes, exit (), etc.

43

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Some Tasks Still Hurt in C++ (1/2)

«» Memory management

" C++ has no garbage collector
 You still have to manage memory allocation & deallocation and track
- It’s still possible to have leaks, double frees, and so on

= But there are some things that help

- “Smart pointers”
— Classes that encapsulate pointers and track reference counts

— Deallocate memory when the reference count goes to zero

- C++’s constructors and destructors permit a pattern known as
“Resource Allocation Is Initialization” (RAII)

— Useful for releasing memory, locks, database transactions, etc.

44

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Some Tasks Still Hurt in C++ (2/2)

+» C++ doesn’t guarantee type or memory safety

= You can still:
- Forcibly cast pointers between incompatible types
- Walk off the end of an array and smash memory
- Have dangling pointers
- Conjure up a pointer to an arbitrary address of your choosing

45

w UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

How to Think About C++

Set of styles
and ways to
use C++

Good styles
and robust
engineering

oractices Set of styles

and ways to
use C

46

W UNIVERSITY of WASHINGTON LO8: Makefiles, C++ Preview CSE 333, Winter 2026

Or...

In the hands of a But if you’re not so
disciplined programmer, disciplined about how you
C++ is a powerful tool use C++...

47

	Slide 1: Name a value that you feel is embedded in the C language.
	Slide 2: Systems Programming Makefiles, C++ Preview
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/4)
	Slide 5: make
	Slide 6: Building Software (1/2)
	Slide 7: Building Software (2/2)
	Slide 8: “Real” Build Process
	Slide 9: Recompilation Management
	Slide 10: Theory Applied to C (1/4)
	Slide 11: Theory Applied to C (2/4)
	Slide 12: Theory Applied to C (3/4)
	Slide 13: Theory Applied to C (4/4)
	Slide 14: Lecture Outline (2/4)
	Slide 15: make Basics
	Slide 16: Using make
	Slide 17: “Phony” Targets
	Slide 18: “all” Example (make or make all)
	Slide 19: make Variables
	Slide 20: Makefile Writing Tips
	Slide 21: Writing a Makefile Example: DAG
	Slide 22: Writing a Makefile Example: Makefile
	Slide 23: Revenge of the Funny Characters
	Slide 24: And more…
	Slide 25: Lecture Outline (3/4)
	Slide 26
	Slide 27: Development of the C Language (1/3)
	Slide 28: Development of the C Language (2/3)
	Slide 29: Development of the C Language (3/3)
	Slide 30: Principles of C
	Slide 31: Principles of C – Embedded Values
	Slide 32: Lecture Outline (4/4)
	Slide 33: Programming Terminology Review
	Slide 34: Encapsulation and Abstraction (C)
	Slide 35: Encapsulation and Abstraction (C++)
	Slide 36: Generics (C)
	Slide 37: Generics (C++)
	Slide 38: Namespaces (C)
	Slide 39: Namespaces (C++)
	Slide 40: Standard Library (C)
	Slide 41: Standard Library (C++)
	Slide 42: Error Handling (C)
	Slide 43: Error Handling (C++)
	Slide 44: Some Tasks Still Hurt in C++ (1/2)
	Slide 45: Some Tasks Still Hurt in C++ (2/2)
	Slide 46: How to Think About C++
	Slide 47: Or…

