
CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

1

About how long did Exercises 4 and 6 take
you? (two polls)

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

pollev.com/cse333a

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Systems Programming
Buffering, POSIX I/O, System Calls

Instructors:

Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Relevant Course Information

❖ Exercise 7 posted today, due Monday (1/26)

▪ Given extra time because HW1 is due

❖ Grades through Exercise 4 are released

▪ Style grading will get stricter, minor issues upgraded to major

❖ Homework 1 due Thursday night (1/22)

▪ Clean up “to do” comments, but leave “STEP #” markers

▪ Graded not just on correctness, also code quality (50/50)

▪ OHs Thursday may go late; check Ed discussion board

▪ Late days counted based on tag commit time; weekend is one day

❖ Homework 2 released on Friday

▪ Partner declaration form and matching form are released

3

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Lecture Outline (1/3)

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)

4

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by
stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from
main())

5

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Buffering Example

6

int main(int argc, char** argv) {
 FILE* fout = fopen("test.txt", "wb");

 // write "hi" one char at a time
 if (fwrite("h", sizeof(char), 1, fout) < 1) {
 perror("fwrite failed");
 fclose(fout);
 return EXIT_FAILURE;
 }

 if (fwrite("i", sizeof(char), 1, fout) < 1) {
 perror("fwrite failed");
 fclose(fout);
 return EXIT_FAILURE;
 }

 fclose(fout);
 return EXIT_SUCCESS;
}

C stdio buffer

test.txt (disk)

⋯

buffered_hi.c

'h' 'i'

'h' 'i'

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

No Buffering Example

7

int main(int argc, char** argv) {
 FILE* fout = fopen("test.txt", "wb");
 setbuf(fout, NULL); // turn off buffering

 // write "hi" one char at a time
 if (fwrite("h", sizeof(char), 1, fout) < 1) {
 perror("fwrite failed");
 fclose(fout);
 return EXIT_FAILURE;
 }

 if (fwrite("i", sizeof(char), 1, fout) < 1) {
 perror("fwrite failed");
 fclose(fout);
 return EXIT_FAILURE;
 }

 fclose(fout);
 return EXIT_SUCCESS;
}

C stdio buffer

test.txt (disk)

unbuffered_hi.c

⋯

'h' 'i'

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Why Buffer?

❖ Performance – avoid disk accesses

▪ Group many small writes
into a single larger write

▪ Disk Latency =
(Jeff Dean from LADIS ’09)

❖ Convenience – nicer API

▪ We’ll compare C’s fread() with POSIX’s read()
8

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ Writing to a buffer (i.e., return from fwrite()) does not mean
the data has actually been written to the file/console

• Segfaults leave buffered data unflushed

❖ Performance – buffering takes time

▪ Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

▪ Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

❖ When is buffering faster? Slower?

9

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Lecture Outline (2/3)

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)

10

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Remember This Picture?

11

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

A brief
diversion...

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

We Need To Go Deeper…

❖ So far we’ve seen the C standard library to access files

▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

❖ These are convenient and portable

▪ They are buffered (by default, can be disabled)

▪ They are implemented using lower-level OS calls

12

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

From C to POSIX

❖ Most UNIX-like OS support a common set of lower-level
APIs: POSIX – Portable Operating System Interface

▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ You will have to use these to read file system directories and for
network I/O, so we might as well learn them now

• These are functionalities that C stdio doesn’t provide!

13

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

open/close

❖ To open a file:

▪ Pass in the filename and access mode (similar to fopen)

▪ Get back a “file descriptor”

• Similar to FILE* from fopen, but is just an int

• -1 indicates an error

❖ Open descriptors: 0 (stdin), 1 (stdout), 2 (stderr)
14

#include <fcntl.h> // for open()
#include <unistd.h> // for close()
 ...
 int fd = open("foo.txt", O_RDONLY);
 if (fd == -1) {
 perror("open failed");
 exit(EXIT_FAILURE);
 }
 ...
 close(fd);

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Advances forward in the file by number
of bytes read

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

▪ There are some surprising error modes

(check errno)

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR/EAGAIN: read was interrupted, please try again (ARG!)

• And many others… 15

ssize_t read(int fd, void* buf, size_t count);

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

16

We want to read ‘n’ bytes. Which is the correct
completion of the blank below?

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…

char* buf = ...; // buffer of size n
int bytes_left = n;
int result; // result of read()

while (bytes_left > 0) {
 result = read(fd, ______, bytes_left);
 if (result == -1) {
 if (errno != EINTR) {
 // a real error happened,
 // so return an error result
 }
 // EINTR happened,
 // so do nothing and try again
 continue;
 }
 bytes_left -= result;
}

pollev.com/cse333a

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

One method to read() 𝑛 bytes

17

int fd = open(filename, O_RDONLY);
char* buf = ...; // buffer of appropriate size
int bytes_left = n;
int result;

while (bytes_left > 0) {
 result = read(fd, buf + (n - bytes_left), bytes_left);
 if (result == -1) {
 if (errno != EINTR) {
 // a real error happened, so return an error result
 }
 // EINTR happened, so do nothing and try again
 continue;
 } else if (result == 0) {
 // EOF reached, so stop reading
 break;
 }
 bytes_left -= result;
}

close(fd);

readN.c

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Other Low-Level Functions

❖ Read man pages to learn about:

▪ write() – write data

• #include <unistd.h>

▪ fsync() – flush disk cache

• #include <unistd.h>

▪ opendir(), readdir(), closedir() – deal with directory
listings

• Make sure you read the section 3 version (e.g., man 3 opendir)

• Go to section tomorrow to learn more!

• #include <dirent.h>

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

18

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

C Standard Library vs. POSIX

❖ C standard library implements a subset of POSIX

▪ e.g., POSIX provides directory manipulation that C std lib doesn’t

❖ C standard library implements automatic buffering

❖ C standard library has a nicer API

❖ The two are similar but C standard library builds on top of
POSIX

▪ Choice between high-level and low-level

▪ Will depend on the requirements of your application

▪ You can use both in Exercise 7!

19

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Lecture Outline (3/3)

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)

20

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are
portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g., files, disk blocks)

21

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

22

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
 …

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

OS: Protection System

❖ OS isolates process from each other
▪ But permits controlled sharing between them

• Through shared name spaces (e.g., file names)

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

❖ OS is allowed to access the hardware
▪ User-level processes run with the CPU

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to
safely enter the OS

23

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

There are special cases

where “super-user”

permissions granted

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Call Analogy

❖ The OS is a bank manager overseeing
safety deposit boxes in the vault

▪ Is the only one allowed in the vault and has the keys
to the safety deposit boxes

❖ If a client wants to access a deposit box (i.e., add or
remove items), they must request that the bank manager
do it for them

▪ Takes time to locate and travel to box and find the right key

▪ Client must wait in the lobby while the bank manager accesses
the box – prevents messing with requested box or other boxes

▪ Takes time to put box away, return from vault, and let client know
that request was fulfilled

24

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls Simplified Overview

❖ The operating system (OS) is a super complicated
“program overseer” program for the computer

▪ The only software that is directly trusted with hardware access

❖ If a user process wants to access an OS feature, they must
invoke a system call

▪ A system call involves context switching into the OS/kernel, which
has some overhead

▪ The OS will handle hardware/special functionality directly (in
privileged mode) while user processes wait and don’t touch
anything themselves

▪ OS will eventually finish, return result to user process, and context
switch back

25

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Call Trace (high-level view, 1/5)

26

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

A CPU (thread of
execution) is running user-

level code in Process A;
the CPU is set to

unprivileged mode.

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view, 2/5)

27

Code in Process A invokes
a system call; the

hardware then sets the
CPU to privileged mode
and traps into the OS,

which invokes the
appropriate system call

handler.

sy
st

em
 c

al
l

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view, 3/5)

28

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view, 4/5)

29

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view, 5/5)

30

The process continues
executing whatever

code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book)

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one
of several places:

• In your program’s code

• In glibc, a shared library containing
the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

31

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

“Library calls” on x86/Linux: Option 1

❖ Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel

▪ e.g., strcmp() from stdio.h

▪ There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

• But after symbols are resolved,
invoking glibc routines is basically
as fast as a function call within your
program itself!

32

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled
by glibc, but they in turn
invoke Linux system calls

▪ e.g., POSIX wrappers around Linux
syscalls

• POSIX readdir() invokes the
underlying Linux readdir()

▪ e.g., C stdio functions that read
and write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
close(), write(), etc.

33

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

“Library calls” on x86/Linux: Option 3

❖ Your program can choose to
directly invoke Linux system calls
as well

▪ Nothing is forcing you to link with
glibc and use it

▪ But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

34

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

strace

❖ A useful Linux utility that shows the sequence of system
calls that a process makes:

35

$ strace ls |& less
execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0
brk(NULL) = 0x15aa000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x7f03bb741000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0
mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000
close(3) = 0
open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,

832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0
mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x7f03bb2fa000
mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0
mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000
... etc ...

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

“Story time” about system calls on x86/Linux

36

BONUS SLIDES

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

Details on x86/Linux

❖ Let’s walk through how a Linux
system call actually works

▪ We’ll assume 32-bit x86 using the
modern SYSENTER / SYSEXIT x86
instructions

• x86-64 code is similar, though details
always change over time, so take this
as an example – not a debugging
guide

37

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (1/11)

Remember our
process address
space picture?

▪ Let’s add some
details:

38

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (2/11)

Process is executing your
program code

39

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (3/11)

Process calls into a
glibc function

▪ e.g., fopen()

▪ We’ll ignore the
messy details of
loading/linking
shared libraries

40

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (4/11)

glibc begins the
process of invoking a
Linux system call

▪ glibc’s
fopen() likely
invokes Linux’s
open() system
call

▪ Puts the system call #
and arguments into
registers

▪ Uses the call x86
instruction to call into
the routine
__kernel_vsyscall
located in linux-
gate.so

41

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (5/11)

linux-gate.so is a
vdso

▪ A virtual
dynamically-linked
shared
object

▪ Is a kernel-provided
shared library that is
plunked into a process’
address space

▪ Provides the intricate
machine code needed to
trigger a system call

42

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (6/11)

linux-gate.so
eventually invokes
the SYSENTER x86
instruction

▪ SYSENTER is x86’s “fast
system call” instruction

• Causes the CPU to raise
its privilege level

• Traps into the Linux
kernel by changing the
SP, IP to a previously-
determined location

• Changes some
segmentation-related
registers (see CSE451)

43

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (7/11)

The kernel begins
executing code at
the SYSENTER
entry point

▪ Is in the architecture-
dependent part of Linux

▪ It’s job is to:

• Look up the system call
number in a system call
dispatch table

• Call into the address
stored in that table entry;
this is Linux’s system call
handler

– For open(), the
handler is named
sys_open, and is
system call #5

44

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (8/11)

The system call
handler executes

▪ What it does is
system-call specific

▪ It may take a long time to
execute, especially if it
has to interact with
hardware

• Linux may choose to
context switch the CPU
to a different runnable
process

45

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (9/11)

Eventually, the
system call handler
finishes

▪ Returns back to the
system call entry point

• Places the system call’s
return value in the
appropriate register

• Calls SYSEXIT to return
to the user-level code

46

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (10/11)

SYSEXIT transitions the
processor back to user-
mode code

▪ Restores the
IP, SP to
user-land values

▪ Sets the CPU
back to
unprivileged mode

▪ Changes some
segmentation-related
registers (see CSE451)

▪ Returns the processor
back to glibc

47

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE 333, Winter 2026L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux (11/11)

glibc continues to
execute

▪ Might execute more
system calls

▪ Eventually
returns back to
your program code

48

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

	Slide 1: About how long did Exercises 4 and 6 take you? (two polls)
	Slide 2: Systems Programming Buffering, POSIX I/O, System Calls
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/3)
	Slide 5: Buffering
	Slide 6: Buffering Example
	Slide 7: No Buffering Example
	Slide 8: Why Buffer?
	Slide 9: Why NOT Buffer?
	Slide 10: Lecture Outline (2/3)
	Slide 11: Remember This Picture?
	Slide 12: We Need To Go Deeper…
	Slide 13: From C to POSIX
	Slide 14: open/close
	Slide 15: Reading from a File
	Slide 16: We want to read ‘n’ bytes. Which is the correct completion of the blank below?
	Slide 17: One method to read() n bytes
	Slide 18: Other Low-Level Functions
	Slide 19: C Standard Library vs. POSIX
	Slide 20: Lecture Outline (3/3)
	Slide 21: What’s an OS?
	Slide 22: OS: Abstraction Provider
	Slide 23: OS: Protection System
	Slide 24: System Call Analogy
	Slide 25: System Calls Simplified Overview
	Slide 26: System Call Trace (high-level view, 1/5)
	Slide 27: System Call Trace (high-level view, 2/5)
	Slide 28: System Call Trace (high-level view, 3/5)
	Slide 29: System Call Trace (high-level view, 4/5)
	Slide 30: System Call Trace (high-level view, 5/5)
	Slide 31: “Library calls” on x86/Linux
	Slide 32: “Library calls” on x86/Linux: Option 1
	Slide 33: “Library calls” on x86/Linux: Option 2
	Slide 34: “Library calls” on x86/Linux: Option 3
	Slide 35: strace
	Slide 36
	Slide 37: Details on x86/Linux
	Slide 38: System Calls on x86/Linux (1/11)
	Slide 39: System Calls on x86/Linux (2/11)
	Slide 40: System Calls on x86/Linux (3/11)
	Slide 41: System Calls on x86/Linux (4/11)
	Slide 42: System Calls on x86/Linux (5/11)
	Slide 43: System Calls on x86/Linux (6/11)
	Slide 44: System Calls on x86/Linux (7/11)
	Slide 45: System Calls on x86/Linux (8/11)
	Slide 46: System Calls on x86/Linux (9/11)
	Slide 47: System Calls on x86/Linux (10/11)
	Slide 48: System Calls on x86/Linux (11/11)

