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About how long did Exercises 4 and 6 take 
you? (two polls)

A.  [0, 2) hours
B.  [2, 4) hours
C.  [4, 6) hours
D.  [6, 8) hours
E.  8+ Hours
F.  I didn’t submit / I prefer not to say
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Relevant Course Information

❖ Exercise 7 posted today, due Monday (1/26)

▪ Given extra time because HW1 is due

❖ Grades through Exercise 4 are released

▪ Style grading will get stricter, minor issues upgraded to major

❖ Homework 1 due Thursday night (1/22)

▪ Clean up “to do” comments, but leave “STEP #” markers

▪ Graded not just on correctness, also code quality (50/50)

▪ OHs Thursday may go late; check Ed discussion board

▪ Late days counted based on tag commit time; weekend is one day

❖ Homework 2 released on Friday

▪ Partner declaration form and matching form are released
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Lecture Outline (1/3)

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)
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Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by 
stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or 
when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from 
main())
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Buffering Example
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int main(int argc, char** argv) {
  FILE* fout = fopen("test.txt", "wb");

  // write "hi" one char at a time
  if (fwrite("h", sizeof(char), 1, fout) < 1) {
    perror("fwrite failed");
    fclose(fout);
    return EXIT_FAILURE;
  }

   if (fwrite("i", sizeof(char), 1, fout) < 1) {
    perror("fwrite failed");
    fclose(fout);
    return EXIT_FAILURE;
  }

  fclose(fout);
  return EXIT_SUCCESS;
}

C stdio buffer

test.txt (disk)

⋯ 

buffered_hi.c

'h' 'i'

'h' 'i'
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No Buffering Example
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int main(int argc, char** argv) {
  FILE* fout = fopen("test.txt", "wb");
  setbuf(fout, NULL); // turn off buffering

  // write "hi" one char at a time
  if (fwrite("h", sizeof(char), 1, fout) < 1) {
    perror("fwrite failed");
    fclose(fout);
    return EXIT_FAILURE;
  }

   if (fwrite("i", sizeof(char), 1, fout) < 1) {
    perror("fwrite failed");
    fclose(fout);
    return EXIT_FAILURE;
  }

  fclose(fout);
  return EXIT_SUCCESS;
}

C stdio buffer

test.txt (disk)

unbuffered_hi.c

⋯ 

'h' 'i'
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Why Buffer?

❖ Performance – avoid disk accesses

▪ Group many small writes 
into a single larger write 

▪ Disk Latency = 
(Jeff Dean from LADIS ’09)

❖ Convenience – nicer API

▪ We’ll compare C’s fread() with POSIX’s read()
8
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Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ Writing to a buffer (i.e., return from fwrite()) does not mean 
the data has actually been written to the file/console

• Segfaults leave buffered data unflushed

❖ Performance – buffering takes time

▪ Copying data into the stdio buffer consumes CPU cycles and 
memory bandwidth

▪ Can potentially slow down high-performance applications, like a 
web server or database (“zero-copy”)

❖ When is buffering faster?  Slower?
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Lecture Outline (2/3)

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)
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Remember This Picture?

11

C application

C standard 
library (glibc)

C++ STL/boost/ 
standard library

C++ application Java application

JRE

CPU     memory     storage     network
GPU clock   audio   radio   peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

A brief
diversion...
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We Need To Go Deeper…

❖ So far we’ve seen the C standard library to access files

▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

❖ These are convenient and portable

▪ They are buffered (by default, can be disabled)

▪ They are implemented using lower-level OS calls
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From C to POSIX

❖ Most UNIX-like OS support a common set of lower-level 
APIs: POSIX – Portable Operating System Interface

▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ You will have to use these to read file system directories and for 
network I/O, so we might as well learn them now

• These are functionalities that C stdio doesn’t provide!
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open/close

❖ To open a file:

▪ Pass in the filename and access mode (similar to fopen)

▪ Get back a “file descriptor”

• Similar to FILE* from fopen, but is just an int

• -1 indicates an error

❖ Open descriptors:  0 (stdin), 1 (stdout), 2 (stderr)
14

#include <fcntl.h>    // for open()
#include <unistd.h>   // for close()
  ...
  int fd = open("foo.txt", O_RDONLY);
  if (fd == -1) {
    perror("open failed");
    exit(EXIT_FAILURE);
  }
  ...
  close(fd);
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Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Advances forward in the file by number
of bytes read

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

▪ There are some surprising error modes 

(check errno)

• EBADF:  bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR/EAGAIN: read was interrupted, please try again  (ARG! )

• And many others… 15

ssize_t read(int fd, void* buf, size_t count);
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16

We want to read ‘n’ bytes. Which is the correct 
completion of the blank below?

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…

char* buf = ...;  // buffer of size n
int bytes_left = n;
int result;       // result of read()

while (bytes_left > 0) {
  result = read(fd, ______, bytes_left);
  if (result == -1) {
    if (errno != EINTR) {
      // a real error happened,
      // so return an error result
    }
    // EINTR happened, 
    // so do nothing and try again
    continue; 
  }
  bytes_left -= result;
}

pollev.com/cse333a
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One method to read() 𝑛 bytes

17

int fd = open(filename, O_RDONLY);
char* buf = ...;  // buffer of appropriate size
int bytes_left = n;
int result;

while (bytes_left > 0) {
  result = read(fd, buf + (n - bytes_left), bytes_left);
  if (result == -1) {
    if (errno != EINTR) {
      // a real error happened, so return an error result
    }
    // EINTR happened, so do nothing and try again
    continue;
  } else if (result == 0) {
    // EOF reached, so stop reading
    break;
  }
  bytes_left -= result;
}

close(fd);

readN.c
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Other Low-Level Functions

❖ Read man pages to learn about:

▪ write() – write data

• #include <unistd.h>

▪ fsync() – flush disk cache

• #include <unistd.h>

▪ opendir(), readdir(), closedir() – deal with directory 
listings

• Make sure you read the section 3 version (e.g., man 3 opendir)

• Go to section tomorrow to learn more!

• #include <dirent.h>

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf 
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http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
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C Standard Library vs. POSIX

❖ C standard library implements a subset of POSIX

▪ e.g., POSIX provides directory manipulation that C std lib doesn’t

❖ C standard library implements automatic buffering

❖ C standard library has a nicer API

❖ The two are similar but C standard library builds on top of 
POSIX

▪ Choice between high-level and low-level

▪ Will depend on the requirements of your application

▪ You can use both in Exercise 7!
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Lecture Outline (3/3)

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)
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What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are 
portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations, 
pixels on the screen, etc. and when

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g., files, disk blocks)

21
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OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.
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• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
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OS: Protection System

❖ OS isolates process from each other
▪ But permits controlled sharing between them

• Through shared name spaces (e.g., file names)

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly

❖ OS is allowed to access the hardware
▪ User-level processes run with the CPU 

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to 
safely enter the OS
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System Call Analogy

❖ The OS is a bank manager overseeing 
safety deposit boxes in the vault

▪ Is the only one allowed in the vault and has the keys
to the safety deposit boxes

❖ If a client wants to access a deposit box (i.e., add or 
remove items), they must request that the bank manager 
do it for them

▪ Takes time to locate and travel to box and find the right key

▪ Client must wait in the lobby while the bank manager accesses 
the box – prevents messing with requested box or other boxes

▪ Takes time to put box away, return from vault, and let client know 
that request was fulfilled

24
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System Calls Simplified Overview

❖ The operating system (OS) is a super complicated 
“program overseer” program for the computer

▪ The only software that is directly trusted with hardware access

❖ If a user process wants to access an OS feature, they must 
invoke a system call

▪ A system call involves context switching into the OS/kernel, which 
has some overhead

▪ The OS will handle hardware/special functionality directly (in 
privileged mode) while user processes wait and don’t touch 
anything themselves

▪ OS will eventually finish, return result to user process, and context 
switch back

25
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System Call Trace (high-level view, 1/5)
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System Call Trace (high-level view, 2/5)
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System Call Trace (high-level view, 3/5)
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Because the CPU 
executing the thread 
that’s in the OS is in 

privileged mode, it is able 
to use privileged 

instructions that interact 
directly with hardware 

devices like disks.
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System Call Trace (high-level view, 4/5)
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System Call Trace (high-level view, 5/5)
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The process continues 
executing whatever 

code is next after the 
system call invocation.

Useful reference:  
CSPP § 8.1–8.3 
(the 351 book)
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“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one 
of several places:

• In your program’s code

• In glibc, a shared library containing 
the C standard library, POSIX, 
support, and more

• In the Linux architecture-independent 
code

• In Linux x86-64 code

31

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program
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“Library calls” on x86/Linux: Option 1

❖ Some routines your program 
invokes may be entirely handled 
by glibc without involving the 
kernel

▪ e.g., strcmp() from stdio.h

▪ There is some initial overhead when 
invoking functions in dynamically 
linked libraries (during loading)

• But after symbols are resolved, 
invoking glibc routines is basically 
as fast as a function call within your 
program itself!
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“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled 
by glibc, but they in turn 
invoke Linux system calls

▪ e.g., POSIX wrappers around Linux 
syscalls

• POSIX readdir() invokes the 
underlying Linux readdir()

▪ e.g., C stdio functions that read 
and write from files

• fopen(), fclose(), fprintf() 
invoke underlying Linux open(), 
close(), write(), etc.
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“Library calls” on x86/Linux: Option 3

❖ Your program can choose to 
directly invoke Linux system calls 
as well

▪ Nothing is forcing you to link with 
glibc and use it

▪ But relying on directly-invoked Linux 
system calls may make your 
program less portable across UNIX 
varieties

34
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strace

❖ A useful Linux utility that shows the sequence of system 
calls that a process makes:

35

$ strace ls |& less
execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0
brk(NULL)                               = 0x15aa000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 

0x7f03bb741000
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0
mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000
close(3)                                = 0
open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"..., 

832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0
mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 

0x7f03bb2fa000
mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0
mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000
... etc ...
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“Story time” about system calls on x86/Linux

36

BONUS SLIDES
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Details on x86/Linux

❖ Let’s walk through how a Linux 
system call actually works

▪ We’ll assume 32-bit x86 using the 
modern SYSENTER / SYSEXIT x86 
instructions

• x86-64 code is similar, though details 
always change over time, so take this 
as an example – not a debugging 
guide

37
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System Calls on x86/Linux (1/11)

Remember our 
process address 
space picture?

▪ Let’s add some 
details:
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System Calls on x86/Linux (2/11)

Process is executing your 
program code
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System Calls on x86/Linux (3/11)

Process calls into a 
glibc function

▪ e.g., fopen()

▪ We’ll ignore the 
messy details of
loading/linking
shared libraries
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System Calls on x86/Linux (4/11)

glibc begins the 
process of invoking a 
Linux system call

▪ glibc’s 
fopen() likely
invokes Linux’s
open() system 
call

▪ Puts the system call # 
and arguments into 
registers

▪ Uses the call x86 
instruction to call into 
the routine 
__kernel_vsyscall 
located in linux-
gate.so
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System Calls on x86/Linux (5/11)

linux-gate.so is a 
vdso

▪ A virtual 
dynamically-linked 
shared 
object

▪ Is a kernel-provided 
shared library that is 
plunked into a process’ 
address space

▪ Provides the intricate 
machine code needed to 
trigger a system call
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System Calls on x86/Linux (6/11)

linux-gate.so 
eventually invokes 
the SYSENTER x86 
instruction

▪ SYSENTER is x86’s “fast 
system call” instruction

• Causes the CPU to raise 
its privilege level

• Traps into the Linux 
kernel by changing the 
SP, IP to a previously-
determined location

• Changes some 
segmentation-related 
registers (see CSE451)
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The kernel begins 
executing code at
the SYSENTER 
entry point

▪ Is in the architecture-
dependent part of Linux

▪ It’s job is to:

• Look up the system call 
number in a system call 
dispatch table

• Call into the address 
stored in that table entry; 
this is Linux’s system call 
handler

– For open(), the 
handler is named 
sys_open, and is 
system call #5
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The system call 
handler executes

▪ What it does is
system-call specific

▪ It may take a long time to 
execute, especially if it 
has to interact with 
hardware

• Linux may choose to 
context switch the CPU 
to a different runnable 
process
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System Calls on x86/Linux (9/11)

Eventually, the 
system call handler
finishes

▪ Returns back to the 
system call entry point

• Places the system call’s 
return value in the 
appropriate register

• Calls SYSEXIT to return 
to the user-level code
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SYSEXIT transitions the 
processor back to user-
mode code

▪ Restores the
IP, SP to 
user-land values

▪ Sets the CPU 
back to 
unprivileged mode

▪ Changes some 
segmentation-related 
registers (see CSE451)

▪ Returns the processor 
back to glibc
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glibc continues to 
execute

▪ Might execute more 
system calls

▪ Eventually 
returns back to 
your program code
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