WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

About how long did Exercises 4 and 6 take
you? (two polls)

A.

B. [2,4)hours

C. [4,6) hours

D. [6, 8) hours

E. 8+ Hours

F. Ididn’t submit /| prefer not to say

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls

Systems Programming
Buffering, POSIX /0, System Calls

Instructors:
Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

Relevant Course Information

» Exercise 7 posted today, due Monday (1/26)

® Given extra time because HW1 is due

» Grades through Exercise 4 are released

= Style grading will get stricter, minor issues upgraded to major

» Homework 1 due Thursday night (1/22)
" Clean up “to do” comments, but leave “STEP #” markers
" Graded not just on correctness, also code quality (50/50)
" OHs Thursday may go late; check Ed discussion board
= Late days counted based on tag commit time; weekend is one day

» Homework 2 released on Friday

= Partner declaration form and matching form are released

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

Lecture Outline (1/3)

+ C Stream Buffering
+» POSIX Lower-Level I/O
+ System Calls (High-Level View)

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

Buffering
+» By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call fflush () on the stream
- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

- When you call fclose () on the stream

- When your process exits gracefully (exit () or return from
main())

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

Buffering Example

[int main(int argc, char*x* argv) {
=P FILEx fout = fopen("test.txt", "wb");

// write "hi" one char at a time C stdio buffer
mP i (fwrite("h", sizeof(char), 1, fout) < 1) { TOAEEY
perror ("fwrite failed");
fclose(fout);
return EXIT_FAILURE;
}
- if (fwrite("i", sizeof(char), 1, fout) < 1) { test.txt (disk)
perror ("fwrite failed"); TSEEEE
fclose(fout);

return EXIT_FAILURE;
}

=P fclose(fout);
return EXIT_SUCCESS;

}
buffered_hi.c

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

No Buffering Example

[int main(int argc, charx* argv) {

:>|.> FILEx fout = fopen("test.txt", "wb");
setbuf(fout, NULL); // turn off buffering

// write "hi" one char at a time C stdio buffer
mP i (fwrite("h", sizeof(char), 1, fout) < 1) { //
perror ("fwrite failed"); e

fclose(fout);
return EXIT_FAILURE;

}

- if (fwrite("i", sizeof(char), 1, fout) < 1) { test.txt (disk)
perror ("fwrite failed"); ' EEE
fclose(fout);
return EXIT_FAILURE;

}

=P fclose(fout);
return EXIT_SUCCESS;

}

\ S

unbuffered_hi.c

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls

Why Buffer?

« Performance — avoid disk accesses

" Group many small writes . SLLL
. . . inpv
into a single larger write LT bekir

\ widivideal
writes
~ /

CSE 333, Winter 2026

N\

Do \
BERL 1] —————— oviput | Xeach

J Stream
—

J

= Disk Latency = Numbers Everyone Should Know

(Jeff Dean from LADIS '09)

L1l cache reference
Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy L
Send 2K bytes over 1 Gbps network 20
Read 1 MB sequentially from memory 250,
Round trip within same datacenter 500
Disk seek 10,000,
Read 1 MB sequentially from disk 20,000,
Send packet CA->Netherlands->CA 150, 000,

0.5 ns

5 ns

T s
25 ns
100 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns

« Convenience — nicer API
= We'll compare C's fread () with POSIX’s read ()

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" |oss of computer power = loss of data

= Writing to a buffer (i.e., return from fwrite ()) does not mean
the data has actually been written to the file/console

- Segfaults leave buffered data unflushed

+» Performance — buffering takes time

= Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

+» When is buffering faster? Slower?

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

Lecture Outline (2/3)

% C Stream Buffering
+» POSIX Lower-Level I/O
+ System Calls (High-Level View)

10

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

Remember This Picture?

A brief
diversion...

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

11

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

We Need To Go Deeper...

WE NEED TO GO
" DEEPER ”

+» So far we’ve seen the C standard library to access files

= Use a provided FILE* stream abstraction
= fopen(), fread(), furite(), fclose(), fseek()

% These are convenient and portable
"= They are buffered (by default, can be disabled)
" They are implemented using lower-level OS calls

12

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

From C to POSIX

+» Most UNIX-like OS support a common set of lower-level
APls: POSIX — Portable Operating System Interface
= open(), read(),write(), close(), Lseek()
- Similar in spirit to their Tx () counterparts from the C std lib

- Lower-level and unbuffered compared to their counterparts
- Also less convenient

"= You will have to use these to read file system directories and for
network 1/0O, so we might as well learn them now

- These are functionalities that C stdio doesn’t provide!

13

CSE 333, Winter 2026

WA UNIVERSITY of WASHINGTON

LO7: Buffering, POSIX I/O, Syscalls

open/close

+~ To open a file:

= Pass in the filename and access mode (similar to fopen)

" Get back a “file descriptor”
« Similar to FILE* from fopen, butis justan int

« =1 indicates an error

7

.

#include <fcntl.h> // for open()
#include <unistd.h> // for close()

int fd = open("foo.txt", O_RDONLY);
if (fd == -1) {

perror ("open failed");

exit (EXIT_FAILURE);

}

close(fd);

J

+ Open descriptors: 0 (stdin), 1 (stdout), 2 (stderr)

14

W UNIVERSITY of WASHINGTON

LO7: Buffering, POSIX I/O, Syscalls

CSE 333, Winter 2026

Reading from a File

e[ssize_t read(int fd, voidx buf, size_t count);]

= Advances forward in the file by number
of bytes read

= Returns the number of bytes read
- Might be fewer bytes than you requested (!!!)

- Returns 0 if you’re already at the end-of-file
- Returns —1 on error (and sets errno)

" There are some surprising error modes (check errno)
EBADF: bad file descriptor

EFAULT: output buffer is not a valid address

-« EINTR/EAGAIN: read wasinterrupted, please try again (ARG!@)
And many others...

15

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

We want to read ‘n’ bytes. Which is the correct
completion of the blank below?

(charx buf = ...y /J/ buffer of size n
int bytes_left = n;
int result; // result of read()
while (bytes_left > 0) {
result = read(fd, , bytes_left);
if (result == -1) { buf + bytes_left

it (errno != EINTR) {

// a real error happened,

// so return an error result
}
// EINTR happened,
// so do nothing and try again
continue;

}
bytes_left -= result;

buf + bytes_left - n

o o v »

buf + n - bytes_left

We’re lost...

m

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

Other Low-Level Functions

+» Read man pages to learn about:

" write() —write data
« #include <unistd.h>
= fsync () —flush disk cache
- #include <unistd.h>

= opendir(), readdir (), closedir () —deal with directory
listings
- Make sure you read the section 3 version (e.g., man 3 opendir)
- Go to section tomorrow to learn more!
« #include <dirent.h>

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

18

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

C Standard Library vs. POSIX

» Cstandard library implements a subset of POSIX
= e.g., POSIX provides directory manipulation that C std lib doesn’t

» Cstandard library implements automatic buffering
» Cstandard library has a nicer API

+» The two are similar but C standard library builds on top of
POSIX

" Choice between high-level and low-level

= Will depend on the requirements of your application
"= You can use both in Exercise 7!

19

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

Lecture Outline (3/3)

% C Stream Buffering
+» POSIX Lower-Level I/O
+» System Calls (High-Level View)

20

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls

CSE 333, Winter 2026

What’s an OS?

« Software that:

= Directly interacts with the hardware
« OS is trusted to do so; user-level programs are not

« OS must be ported to new hardware; user-level programs are
portable

" Manages (allocates, schedules, protects) hardware resources

- Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.g., files, disk blocks)

21

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

OS: Abstraction Provider

+» The OS is the “layer below”

= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

a process running File System
your program * open(), read(), write(), close(), ...

Network Stack
» connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
« fork(), wait(), nice(), ...

£
Q
+
n
>
n
<
G

network stack
virtual memory
process mgmt.

... etc ...

22

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

OS:

Protection System

+ OS isolates process from each other There are special cases

+» OS isolates itself from processes

‘0

+ OSis allowed to access the hardware

where “super-user”

But permits controlled sharing between them o
permissions gravted

« Through shared name spaces (e.g., file names)

Must prevent processes from accessing the
hardware directly

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

User-level processes run with the CPU ON
(processor) in unprivileged mode (trusted)
The OS runs with the CPU in privileged mode

User-level processes invoke system calls to
safely enter the OS HW (tFUStEd)

23

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

System Call Analogy

+» The OS is a bank manager overseeing
safety deposit boxes in the vault

= |s the only one allowed in the vault and has the keys
to the safety deposit boxes

+ If a client wants to access a deposit box (i.e., add or
remove items), they must request that the bank manager
do it for them
= Takes time to locate and travel to box and find the right key

= Client must wait in the lobby while the bank manager accesses
the box — prevents messing with requested box or other boxes

= Takes time to put box away, return from vault, and let client know
that request was fulfilled

24

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls CSE 333, Winter 2026

System Calls Simplified Overview

+ The operating system (OS) is a super complicated
“program overseer” program for the computer

" The only software that is directly trusted with hardware access

+ |f a user process wants to access an OS feature, they must
invoke a system call

= A system call involves context switching into the OS/kernel, which
has some overhead

= The OS will handle hardware/special functionality directly (in
privileged mode) while user processes wait and don’t touch
anything themselves

= OS will eventually finish, return result to user process, and context
switch back

25

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/0O, Syscalls CSE 333, Winter 2026

System Call Trace (high-level view, 1/5)

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

A CPU (thread of
execution) is running user-
level code in Process A;

the CPU is set to 0S
unprivileged mode. (trusted)

SHY)

26

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Call Trace (high-level view, 2/5)

Code in Process A invokes
a system call; the
hardware then sets the
CPU to privileged mode

and traps into the OS, 0S
which invokes the (trusted)
appropriate system call
handler.

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call

27

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Call Trace (high-level view, 3/5)

Because the CPU
executing the thread
that’s in the OSis in

privileged mode, it is able

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

to use privileged 0S
instructions that interact (trusted)
directly with hardware
devices like disks. VANEVANEREYANEVA

HW (trusted)

28

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Call Trace (high-level view, 4/5)

Once the OS has finished
servicing the system call,
which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call return

ON

(2) Returns out of the system (trusted)

call back to the user-level code

in Process A.
HW (trusted)

29

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Call Trace (high-level view, 5/5)

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

The process continues
executing whatever
code is next after the
system call invocation. 0S

(trusted)

Useful reference: HW (trusted)
CSPP § 8.1-8.3

(the 351 book)

SHY)

30

CSE 333, Winter 2026

WA UNIVERSITY of WASHINGTON

“Library calls” on x86/Linux

+» A more accurate picture:
" Consider a typical Linux process

" |ts thread of execution can be in one
of several places:

In your program’s code

In glibc, a shared library containing
the C standard library, POSIX,
support, and more

In the Linux architecture-independent
code

In Linux x86-64 code

LO7: Buffering, POSIX I/O, Syscalls

Your program

C standard
library

glibc

Linux
system calls

architecture-independent code

architecture-dependent code

Linux kernel

31

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

“Library calls” on x86/Linux: Option 1

Your program

+» Some routines your program ?
invokes may be entirely handled
by g Libc without involving the standard
kernel Horary

= e.g., strcmp() fromstdio.h

glibc

" There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading) architecture-independent code
- But after symbols are resolved,

invoking g'libc routines is basically

as fast as a function call within your architecture-dependent code
program itself!

Linux kernel

32

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls

CSE 333, Winter 2026

“Library calls” on x86/Linux: Option 2

+» Some routines may be handled
by glibc, but they in turn
invoke Linux system calls
= e.g., POSIX wrappers around Linux
syscalls

- POSIX readdir () invokes the
underlying Linux readdir ()

= e.g., Cstdio functions that read
and write from files

. fopen(), fclose(), fprintf()
invoke underlying Linux open (),
close(),write(), etc.

Your program

C standar(l gmm—
library AR

glibc

architecture-independent code

architecture-dependent code

Linux kernel

33

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

“Library calls” on x86/Linux: Option 3

Your program

+ Your program can choose to
directly invoke Linux system calls
as well C standard

= Nothing is forcing you to link with ey
glibc and use it

= But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX

varieties

glibc

architecture-dependent code

Linux kernel

34

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

strace

+ A useful Linux utility that shows the sequence of system
calls that a process makes:

$ strace 1s 2>&1 | less

execve("/usr/bin/ls", ["ls"], [/* 41 vars x/]) = 0O

brk (NULL) = Ox15aa000

mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
Ox7fO3bb741000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/1ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0

mmap (NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000

close(3) =0

open("/1ib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,
832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) =0

mmap (NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
Ox7fO3bb2fato0

mprotect (Ox7f03bb31e000, 2093056, PROT_NONE) = 0

mmap (0x7f03bb51d00O, 8192, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, Ox23000) = 0x7f03bb51d00O0O

etc

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

BONUS SLIDES

“Story time” about system calls on x86/Linux

36

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

Details on x86/Linux

Your program

+ Let’s walk through how a Linux
system call actually works

= We’ll assume 32-bit x86 using the C standard
modern SYSENTER / SYSEXIT x86 library
instructions glibc

- x86-64 code is similar, though details
always change over time, so take this
as an example — not a debugging
guide

architecture-dependent code

Linux kernel

37

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Calls on x86/Linux (1/11)

OXFFFFFFFF Your program

Remember our
process address
space picture?

" let’s add some
details:

C standard
library

glibc

architecture-independent code

architecture-dependent code

Linux kernel

CPU

0x00000000 38

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/0O, Syscalls CSE 333, Winter 2026

System Calls on x86/Linux (2/11)

OXFFFFFFFF Your program

Process is executing your
program code

C standard
library
SP .
glibc
architecture-independent code
architecture-dependent code
Ik Linux kernel

unpriv CPU

0x00000000 39

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

Process calls into a
glibc function

System Calls on x86/Linux (3/11)

OXFFFFFFFF

Your program

e.qg., fopen()
We’'ll ignore the
messy details of SE

loading/linking glibc
shared libraries

C standard
library ?

IR

architecture-independent code

architecture-dependent code

Linux kernel

unpriv CPU

0x00000000 40

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Calls on x86/Linux (4/11)

OXFFFFFFFF

Your program

IR
glibc begins the

process of invoking a
Linux system call
= glibc’s C standard ?
fopen () likely feliey
. o SP
invokes Linux’s
open () system
call

glibc

= Puts the system call #
and arguments into
registers

= Uses the call x86
instruction to call into
the routine architecture-dependent code
__kernel_vsyscall
located in Tinux-
gate.so

architecture-independent code

Linux kernel

unpriv CPU

0x00000000 41

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

vdso

System Calls on x86/Linux (5/11)

OXFFFFFFFF

Your program

IR
linux-gate.soisa
= Avirtual C';fg;ijrd ?
dynamically-linked gp)
shared glibc

object

Is a kernel-provided
shared library that is
plunked into a process’

architecture-independent code
address space

Provides the intricate

machine code needed to
trigger a system call architecture-dependent code

Linux kernel

unpriv CPU

0x00000000 42

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Calls on x86/Linux (6/11)

OXFFFFFFFF Your program

linux—-gate.so

eventually invokes

the SYSENTER x86

instruction

= SYSENTER is x86’s “fast
system call” instruction glibc

Causes the CPU to raise
its privilege level

SP
IR

C standard
library

Traps into the Linux
kernel by changing the
SP, IP to a previously- architecture-independent code

determined location
Changes some

segmentation-related

registers (see CSE451) ?archltecture-dependent code

Linux kernel

priv CPU

0x00000000 43

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Calls on x86/Linux (7/11)

OXFFFFFFFF Your program

The kernel begins

executing code at ?@P

the SYSENTER

entry point C standard

= |sin the architecture- library
dependent part of Linux glibc

= |t'sjobis to:
Look up the system call

number in a system call ?
dispatch table

Call into the address
stored in that table entry;
this is Linux’s system call
handler

— Foropen(), the
handler is named
sys_open, andis

system call #5 priv CPU
0x00000000 44

architecture-independent code

architecture-dependent code

Linux kernel

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

The system call
handler executes

System Calls on x86/Linux (8/11)

OXFFFFFFFF

Your program

SP

I
What it does is

system-call specific C standard

library

It may take a long time to
execute, especially if it glibc
has to interact with
hardware

Linux may choose to

context switch the CPU ?
to a different runnable architecture-independent code

process

architecture-dependent code

Linux kernel

priv CPU

0x00000000 45

CSE 333, Winter 2026

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls

System Calls on x86/Linux (9/11)

OXFFFFFFFF Your program

Eventually, the

system call handler Sﬂi@@

finishes

= Returns back to the
system call entry point

Places the system call’s
return value in the
appropriate register

Calls SYSEXIT to return
to the user-level code

C standard
library

glibc

architecture-independent code

?architecture-dependent code

Linux kernel

priv CPU
0x00000000 %

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE 333, Winter 2026

System Calls on x86/Linux (10/11)

OXFFFFFFFF

Your program

SYSEXIT transitions the
processor back to user-
mode code

= Restores the

IP, SP to
user-land values

= Sets the CPU
back to
unprivileged mode

C standard
library ?

P glibc

IR

= Changes some
segmentation-related
registers (see CSE451)

" Returns the processor
backto glibc architecture-dependent code

architecture-independent code

Linux kernel

unpriv CPU

0x00000000 47

CSE 333, Winter 2026

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX 1/0, Syscalls

System Calls on x86/Linux (11/11)

OXFFFFFFFF Your program

glibc continues to

execute
= Might execute more

system calls C standard
= Eventually Sp library

glibc

returns back to
your program code

architecture-independent code

architecture-dependent code

IR Linux kernel

CPU

0x00000000 48

unpriv

	Slide 1: About how long did Exercises 4 and 6 take you? (two polls)
	Slide 2: Systems Programming Buffering, POSIX I/O, System Calls
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/3)
	Slide 5: Buffering
	Slide 6: Buffering Example
	Slide 7: No Buffering Example
	Slide 8: Why Buffer?
	Slide 9: Why NOT Buffer?
	Slide 10: Lecture Outline (2/3)
	Slide 11: Remember This Picture?
	Slide 12: We Need To Go Deeper…
	Slide 13: From C to POSIX
	Slide 14: open/close
	Slide 15: Reading from a File
	Slide 16: We want to read ‘n’ bytes. Which is the correct completion of the blank below?
	Slide 18: Other Low-Level Functions
	Slide 19: C Standard Library vs. POSIX
	Slide 20: Lecture Outline (3/3)
	Slide 21: What’s an OS?
	Slide 22: OS: Abstraction Provider
	Slide 23: OS: Protection System
	Slide 24: System Call Analogy
	Slide 25: System Calls Simplified Overview
	Slide 26: System Call Trace (high-level view, 1/5)
	Slide 27: System Call Trace (high-level view, 2/5)
	Slide 28: System Call Trace (high-level view, 3/5)
	Slide 29: System Call Trace (high-level view, 4/5)
	Slide 30: System Call Trace (high-level view, 5/5)
	Slide 31: “Library calls” on x86/Linux
	Slide 32: “Library calls” on x86/Linux: Option 1
	Slide 33: “Library calls” on x86/Linux: Option 2
	Slide 34: “Library calls” on x86/Linux: Option 3
	Slide 35: strace
	Slide 36
	Slide 37: Details on x86/Linux
	Slide 38: System Calls on x86/Linux (1/11)
	Slide 39: System Calls on x86/Linux (2/11)
	Slide 40: System Calls on x86/Linux (3/11)
	Slide 41: System Calls on x86/Linux (4/11)
	Slide 42: System Calls on x86/Linux (5/11)
	Slide 43: System Calls on x86/Linux (6/11)
	Slide 44: System Calls on x86/Linux (7/11)
	Slide 45: System Calls on x86/Linux (8/11)
	Slide 46: System Calls on x86/Linux (9/11)
	Slide 47: System Calls on x86/Linux (10/11)
	Slide 48: System Calls on x86/Linux (11/11)

