#include <stdio.h> // FILE, size_t, perror, fx I/O functions
#include <stdlib.h> // size_t, EXIT_FAILURE, EXIT_SUCCESS

#define READBUFSIZE 128

/* Copy a file byte-by-byte one user buffer size at a time */
int main(int argc, charx* argv) {

FILEx fin;

FILEx fout;

char readbuf[READBUFSIZE];

size_t readlen;

// Take the filenames from command line arguments

if (argc != 3) {
fprintf(stderr, "usage: ./cp_example infile outfile\n");
return EXIT_FAILURE;

}

// Open the 1input file
fin = fopen(argv[1l], "rb"); // "rb"™ --> read, binary mode
if (fin == NULL) {

perror ("fopen for read failed");

return EXIT_FAILURE;

}

// Open the output file
fout = fopen(argv[2], "wb"); // "wb" --> truncate & write, binary mode
if (fout == NULL) {

perror ("fopen for write failed");

fclose(fin);

return EXIT_FAILURE;

}

// Read from the file, write to fout.
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
// Test to see if we encountered an error while reading.
if (ferror(fin)) {
perror("fread failed");
fclose(fin);
fclose(fout);
return EXIT_FAILURE;

}

if (fwrite(readbuf, 1, readlen, fout) < readlen) {
perror ("fwrite failed");
fclose(fin);
fclose(fout);
return EXIT_FAILURE;

}

}

// No need to error-check fclose - usually called just before exiting.

// From man page: "In either case [success or failure], any futher access
// (including another call to fclose()) to the stream results 1in undefined
// behavior."

fclose(fin);

fclose(fout);

return EXIT_SUCCESS;



