
#include <stdio.h> // FILE, size_t, perror, f* I/O functions
#include <stdlib.h> // size_t, EXIT_FAILURE, EXIT_SUCCESS

#define READBUFSIZE 128

/* Copy a file byte-by-byte one user buffer size at a time */
int main(int argc, char** argv) {
 FILE* fin;
 FILE* fout;
 char readbuf[READBUFSIZE];
 size_t readlen;

 // Take the filenames from command line arguments
 if (argc != 3) {
 fprintf(stderr, "usage: ./cp_example infile outfile\n");
 return EXIT_FAILURE;
 }

 // Open the input file
 fin = fopen(argv[1], "rb"); // "rb" --> read, binary mode
 if (fin == NULL) {
 perror("fopen for read failed");
 return EXIT_FAILURE;
 }

 // Open the output file
 fout = fopen(argv[2], "wb"); // "wb" --> truncate & write, binary mode
 if (fout == NULL) {
 perror("fopen for write failed");
 fclose(fin);
 return EXIT_FAILURE;
 }

 // Read from the file, write to fout.
 while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
 // Test to see if we encountered an error while reading.
 if (ferror(fin)) {
 perror("fread failed");
 fclose(fin);
 fclose(fout);
 return EXIT_FAILURE;
 }
 if (fwrite(readbuf, 1, readlen, fout) < readlen) {
 perror("fwrite failed");
 fclose(fin);
 fclose(fout);
 return EXIT_FAILURE;
 }
 }

 // No need to error-check fclose - usually called just before exiting.
 // From man page: "In either case [success or failure], any futher access
 // (including another call to fclose()) to the stream results in undefined
 // behavior."
 fclose(fin);
 fclose(fout);

 return EXIT_SUCCESS;
}

