WA UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333j

About where are you on Homework 1?

A.
B. Working on Part A (LinkedList)
C. Working on Part B (HashTable)
D. Finished or about finished
E. Prefer not to say

Notes:

v" Don’t wait — Part B is longer and harder than Part A

v" OHs get crowded — come prepared to describe (1) your incorrect
behavior, (2) what you think the issue is, and (3) what you’ve tried

"

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON LO6: Linking, File 1/0

Systems Programming

Linking, File I/O

Instructors:
Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Relevant Course Information

» Exercise 6 due Wednesday (1/21)
= Skipping Exercise 5 this quarter due to scheduling/timing

» Homework 1 due next Thursday (1/22)

= Watch that HashTab le doesn’t violate the modularity of
LinkedList (i.e., respect the interfaces!)

= Watch for pointers to local (stack) variables
= Use gdb and valgrind and draw memory diagrams!
= Please leave “STEP #” markers for graders!

= Gradescope “lateness” based on when we run the upload script;
submission time (and late days) based on commit time on tag
hwl-submit (see git_tag_timestamp.txt)

= Light grading of your git commit history

W UNIVERSITY of WASHINGTON

LO6: Linking, File I/O

Preprocessor Tricks: Macros

feeoded a8 juot et
« You can pass arguments to macros

void Foo() {

it (obD(5))
printf("5 is odd!\n");

]

[#define ODD(x) ((x) % 2 != 0))

CPP
q

CSE 333, Winter 2026

7

}

.

void Foo() {
if (((5) % 2 1= 0))
printf ("5 is odd!\n");

+» Beware of operator precedence issues!

= Use parentheses

[#define ODD(x) ((x) % 2 != Q)
#define WEIRD(x) x % 2 1= 0

ODD(5 + 1)14;5{;/7

WEIRD(5 + 1);

\

C
FJ?

5+ 1
\

((5 + 1) %2 1= 0);

/7
%

2 1= 0;

+ Discouraged in favor of inline functions (Google)

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Macro Alternatives

+» const: atype qualifier that indicates that the data is
read only

" Compile-time construct that will generate a compiler error or
warning if violated

" Much more heavily used in C++ and we’ll return to the nuances
here later on in the course (pointers are weird!)

" Canreplace constant macro with a const variable

+» 1nlLine: keyword used in front of a function definition to
suggest to the compiler to optimize the function call away
" Mostly beyond the scope of this course

= Can replace macro with arguments with (static)inline
functions

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Preprocessor Tricks: Defining Tokens

» Besides #def1nesin the code, preprocessor values can
be given as part of the gcc command:

$ gcc -Wall -g -DTRACE -o 1ifdef 1ifdef.c
— D Ae‘(i ne
- wndefine

» assert can be controlled the same way — defining NDEBUG
causes assert to expand to “empty”

" |t's amacro—see assert.h

$ gcc -Wall -g -DNDEBUG -o faster useassert.c

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Preprocessor Tricks: Conditional

Compilation i fael - sehne’
+ You can change what gets compiled #fndef = " adt defined’

" |n this example, #define TRACE before #1fdef to include
debug printfsin compiled code

(i#1 fdef (TRACE)

#define ENTER(f) printf("Entering %s\n", f)
#define EXIT(f) printf("Exiting %s\n", f)
#else

[%define ENTER ()

#define EXIT(f)

#tendif

// print n
void Pr(int n) {

ENTER("Pr'");

printf("\n = %d\n", n);

EXIT("Pr");

i J
ifdef.c

W UNIVERSITY of WASHINGTON

@ Poll Everywhere

What will happen when we try to compile and run?

$ gcc -Wall -DFOO0 -DBAR ~o condcomp condcomp.c
$./condcomp

A.

B.

v
Output "334" (

C.

Compiler message
about EVEN

. Compiler message

about BAZ

LO6: Linking, File I/O

CSE 333, Winter 2026

pollev.com/cse333j

(#ifdef FOO <&— ves
[#define EVEN(x) ! (x%2)
#endif

#ifndef DBAR <—no
|#define BAZ 333

#endif evglnates fo 10 =1

int main(inEJ§£g_&]ghar** argv) {
int i = BV HEN(iI;} N 333;

printf("%d\n",q);
return EXIT_SUCCESS;

We’re lost...

\J

\

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Lecture Outline (1/2)

+ Visibility of Symbols
= extern, static
+ File I/0 with the C standard library

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Namespace Problem

+ If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

" Yes, if you use external linkage

- The name “counter” refers to the same variable in both files
- The variable is defined in one file and declared in the other(s)
- When the program is linked, the symbol resolves to one location

"= No, if you use internal linkage
- The name “counter” refers to a different variable in each file
- The variable must be defined in each file
- When the program is linked, the symbols resolve to two locations

10

W UNIVERSITY of WASHINGTON

LO6: Linking, File I/O

CSE 333, Winter 2026

] dederstion | Aefindion intial iz
. int x; 4 v x|
External Linkage ..o, v | v | v |x@
extern int" x ; \/ 1
extern int x=1: J v N4 X E‘

\/
0’0

visible

extern makes a declaration of something externally-

= Works slightly differently for variables and functions...

(#include <stdio.h> h

#include <stdlib.h>

// A global variable, defined and
// i1nitialized here in foo.c.
// It has external linkage by 2

// default.

int counter = 1; connTer @

int main(int argc, charx*
printf ("%d\n", count&; ;
Bar () ;

printf("%d\n", counter); //2
return EXIT_SUCCESS;

/71

/[

Ze

(#include <stdio.h>

// "counter" is defined and
// initialized in foo.c.

// Here, we declare i1t, and
// specify external linkage

extern int counter;

void Bar() {
counter++;

y
foo.c

\.

// by using the extern specifier.

b

printf (" (Bar): counter = %d\n"
\r@_counter); A (bor): (owiter = 2.
+

J

bar.c

11

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

Internal Linkage

LO6: Linking, File I/O

+» static (in the global context) restricts a definition to

visibility within that file

(#include <stdio.h>
#include <stdlib.h>

// A global variable, defined and
// initialized here in foo.c.

// We force internal linkage by
// using the static specifier.
static int counter = 1; Nb’ rfl

int main(int argc, chart*////v) {

printf ("%d\n", counteq&
Bar () ;

printf("%d\n", counter); /1
return EXIT_SUCCESS;

J y

(#include <stdio.h>

\. J

// A global variable, defined and
// initialized here in bar.c.

// We force internal linkage by
// using the static specifier.

static int counter = 100; 101
counTer
void Ba(ﬁl_i_,lglzf”g Cear)
counter++; Q@

pr1ntf(”(Bar counter = %d\n",
counter); # (bar) caum'l“er = 1ol

foo.c

bar.c

12

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Function Visibility

(// By using the static specifier, we are indicating b
// that Foo() should have internal linkage. Other
// .c files cannot see or invoke Foo().
static int Foo(int x) {
return x*3 + 1;
+
// Bar i1s "extern'" by default. Thus, other .c files
// could declare our Bar() and invoke 1it.
int Bar(-int X) { bar () can inyoke foo() bewwse
return 2*foo(xf?” N same file
bar.c| }
L J
(#include <stdio.h> R
#include <stdlib.h>
extern int Bar(int x); // "extern" is default,, usually omit
: RL“T—'Q6+ exp\iditly needed, bk indicater that defindin s elsechere
int main(int argc, char** argv) {
printf("%d\n", Bar(5));
return EXIT_SUCCESS;
main.c{ }

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Linkage Issues

+ Every global (variables and functions) is extern by
default

" Unless you add the static specifier, if some other module uses
the same name, you’ll end up with a collision!

- Best case: compiler (or linker) error s

- Worst case: stomp all over each other

+ It’s good practice to:
= Use static to “defend” your globals
. . ——
- Hide your private stuff!
" Place external declarations in a module’s header file

- Header is the public specification

14

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Static Confusion...

+» C has a different use for the word “static”: to create a
persistent local variable

" The storage for that variable is allocated when the program loads,
in either the .data or . bss segment (Stax Dt)

= Retains its value across multiple function invocations

(void Foo() {)
static int count = 1; AVPm@ﬁx
printf(“Foo has been called %d times\n", count++);

}

void Bar() {
int count = 1; /) re-intialized eacln time
printf(“Bar has been called %d times\n", count++);

}

int main(int argc, charxx argv) {
Foo(); Foo(); Bar(); Bar(); return EXIT_SUCCESS;

static_extent.c \ 2 L bimes 2mes Admes Ldimes)

15

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Additional C Topics

+ Teach yourself!
m i I
man pages are your friend!

= String library functions in the C standard library

- #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...

« #include <stdlib.h>or #include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

" How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

" unions and what they are good for

= enums and what they are good for

" Pre- and post-increment/decrement

= Harder: the meaning of the “volati le” storage class

16

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Lecture Outline (2/2)

+ Visibility of Symbols
" extern, static
+ File 1/O with the C standard library

[This is essential material for the next part of the project (HW2)!

17

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

File 1/O

+» We'll start by using C’s standard library
= These functions are part of glibc on Linux
" They are implemented using Linux system calls (POSIX)

+ C's stdio defines the notion of a stream
ﬁ&A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish l
onsdI €
" |s buffered by default; L1bc reads ahead of your program/v((w,u«wa)
|
Three streams prowdedkky default: 55d'| n, stdowtderr

osrd—> Gnsle S corvole

« You can open additional streams to read and write to files (bufferca)

= Cstreams are manipulated with @ FILE* pointer, which is
defined in stdio.h

18

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Stream Functions (1/2)

+» Some stream functions (complete list in stdio.h):

L # evor!

-KE?;E9 fopen(filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[1nt fclose(stream);]

« Closes the specified stream (and file)

-[1nt fprintf(stream, format, ...);]

- Writes a formatted C string
- printf(...);isequivalentto fprintf(stdout, ...);

-[1nt fscanf(stream, format, ...);]

- Reads data and stores data matching the format string

19

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Stream Functions (2/2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen(filename, mode) ;]

- Opens a stream to the specified file in specified file access mode

-[1nt fclose(stream);]

« Closes the specified stream (and file)

‘h‘ie_s 1o n~ove
Size ¥ court bytes tstal

k[s1ze t furite(pt s1ze, count stream);]
er\?

ad(;(‘:-\\f/‘"m 5\ Writes an array of count eIements of size bytes from ptr to stream
& o\ /—______\

T~
-[size_t fread(ptr, size, C0unta<§£Eé§Ej3]

- Reads an array of count elements of size bytes from stream to ptr

Wwser arrey/

20

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Stream Error Checking/Handling

% Some error functions (complete list in stdio.h):

-[1nt ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

-[1nt clearerr(stream);]

- Resets error and EOF indicators for the specified stream

‘O\W"\l VA Y
[I

v

-[void perror(message);]

- Prints message followed by an error message related tojerrno|to
Stderr extra info .’

elloc /’76—) 'FPY'W\‘\’F(S’HGW‘J)) //Smsle) kn.pv\ ouse

Meta 5 (7 f’error(hmr ertor msl‘)} H mitile posiide cawses

21

C Streams Example (1/3)

cp_example.c

7

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, charxx argv) {
FILE*x fin;
FILEx fout; €— stream varisbles
char readbuf[READBUFSIZE]; ¢— arbimrily~sized buffer

size_t readlen;

. Pr;n'_s Fo COhsolaJ even {'F yow Piee_ \ol’bjmh\ o\.o\(v»"'

it (argc != 3)
fprintf(stderr, "usage: ./cp_example 1infile outfile\n");
return EXIT_FAILURE; // defined in stdlib.h

}

// Open the input f'i_]_e\/‘p'lc st ot When re,di'ﬂ
fin = fopen(argv([1], "rb"); // "rb" -> read, binary mode
if (fin == NULL) {
perror ("fopen for read failed"); <
return EXIT_FAILURE;

}

// next slide's code

pr‘m’\) et a b e Sure & Creor

N\

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

22

WA UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Streams Example (2/3)

(int main(int argc, charxx argv) {

cp_example.c

\

// previous slide's code

when wri‘h‘nﬁ , e Crea"‘e)\ ‘;(fy AOCJV\"L ﬁ"b+
// Open the output filel///
fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
if (fout == NULL) {
perror ("fopen for write failed"); , /
fclose(fin); < makssure f clen ,“0’ fir every exit ptin !

return EXIT_FAILURE;

¥ & bytes adudly vead

// Read fromvthe file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
// Test to see i1f we encountered an error while reading
if (ferror(fin)) { (crhack F erior on npd stragm)
perror("fread failed");

| ‘ - ®Mlm q
. @ efl(; (I\ 2 ‘q

return EXIT_FAILURE;

// next slide’s code

W UNIVERSITY of WASHINGTON

LO6: Linking, File I/O

CSE 333, Winter 2026

C Streams Example (3/3)

cp_example.c

[. o .
int main(int argc,

char** argv) {

\

// two slides ago's code

// previous slide's code

Whm

Lrom %reﬁb*

if (fwrite(readbuf, 1, readlen,
perror ("fwrite failed");

fout)

N\
< readlen) {

L,_\/_/

5(>tv\e’H'\ "

k.aVO"\

o &

o

fclose(fin);
fclose(fout);

}
}

fclose(fin);
fclose(fout);

return EXIT_FAILURE;

I

C\oje 6+ream} \,.)/ter\ Juy\e w/f\’L ‘H\e»\,

return EXIT_SUCCESS;

e Al rqm\a byte)

24

W UNIVERSITY of WASHINGTON LO6: Linking, File 1/0

Extra Exercise #1

» Modify the linked list code from Lecture 4 Extra
Exercise #3

= Add static declarations to any internal functions you implemented
in Linkedlist.h

= Add a header guard to the header file

CSE 333, Winter 2026

25

W UNIVERSITY of WASHINGTON LO6: Linking, File 1/0

CSE 333, Winter 2026

Extra Exercise #2

\/
0’0

\/
0’0

Write a program that:

= Uses argc/argyv to receive the name of a text file

= Reads the contents of the file a line at a time

= Parses each line, converting text intoauint32_t

= Builds an array of the parsed uint32_t’s
= Sorts the array
® Prints the sorted array to stdout

Hint: use man to read about
getline, sscanf, reallogc,
and gqsort

bash$ cat in.txt
1213

3231

OOOOOS5

52

bash$./extral in.txt
5

52

1213

3231

bashs$

26

W UNIVERSITY of WASHINGTON

Extra Exercise #3

+» Write a program that:

LO6: Linking, File I/O

" |Loops forever; in each loop:

- Prompt the user to
input a filename

Reads a filename
from stdin

- Opens and reads
the file

Prints its contents
to stdout in the format shown:

00000000
00000010
00000020
00000030
00000040
00000050

00000060
010JOIOIOION4C;
010JOJ0I0I0R10;
000060690
O00O000an

. etc ...

= Use man to read about fgets

= QOr, if you’re more courageous, try man 3 readline tolearn about
libreadline. aand Google to learn how to link to it

CSE 333, Winter 2026

	Slide 1: About where are you on Homework 1?
	Slide 2: Systems Programming Linking, File I/O
	Slide 3: Relevant Course Information
	Slide 4: Preprocessor Tricks: Macros
	Slide 5: Macro Alternatives
	Slide 6: Preprocessor Tricks: Defining Tokens
	Slide 7: Preprocessor Tricks: Conditional Compilation
	Slide 8: What will happen when we try to compile and run?
	Slide 9: Lecture Outline (1/2)
	Slide 10: Namespace Problem
	Slide 11: External Linkage
	Slide 12: Internal Linkage
	Slide 13: Function Visibility
	Slide 14: Linkage Issues
	Slide 15: Static Confusion…
	Slide 16: Additional C Topics
	Slide 17: Lecture Outline (2/2)
	Slide 18: File I/O
	Slide 19: C Stream Functions (1/2)
	Slide 20: C Stream Functions (2/2)
	Slide 21: C Stream Error Checking/Handling
	Slide 22: C Streams Example (1/3)
	Slide 23: C Streams Example (2/3)
	Slide 24: C Streams Example (3/3)
	Slide 25: Extra Exercise #1
	Slide 26: Extra Exercise #2
	Slide 27: Extra Exercise #3

