
CSE 333, Winter 2026L06: Linking, File I/O

1

About where are you on Homework 1?

A. Haven’t started yet
B. Working on Part A (LinkedList)
C. Working on Part B (HashTable)
D. Finished or about finished
E. Prefer not to say

Notes:

✓ Don’t wait – Part B is longer and harder than Part A

✓ OHs get crowded – come prepared to describe (1) your incorrect
behavior, (2) what you think the issue is, and (3) what you’ve tried

pollev.com/cse333j

CSE 333, Winter 2026L06: Linking, File I/O

Systems Programming
Linking, File I/O
Systems Programming
Linking, File I/O

Instructors:

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE 333, Winter 2026L06: Linking, File I/O

Relevant Course Information

❖ Exercise 6 due Wednesday (1/21)

▪ Skipping Exercise 5 this quarter due to scheduling/timing

❖ Homework 1 due next Thursday (1/22)

▪ Watch that HashTable doesn’t violate the modularity of
LinkedList (i.e., respect the interfaces!)

▪ Watch for pointers to local (stack) variables

▪ Use gdb and valgrind and draw memory diagrams!

▪ Please leave “STEP #” markers for graders!

▪ Gradescope “lateness” based on when we run the upload script;
submission time (and late days) based on commit time on tag
hw1-submit (see git_tag_timestamp.txt)

▪ Light grading of your git commit history

3

CSE 333, Winter 2026L06: Linking, File I/O

Preprocessor Tricks: Macros

❖ You can pass arguments to macros

❖ Beware of operator precedence issues!

▪ Use parentheses

❖ Discouraged in favor of inline functions (Google)
4

#define ODD(x) ((x) % 2 != 0)

void Foo() {
 if (ODD(5))
 printf("5 is odd!\n");
}

void Foo() {
 if (((5) % 2 != 0))
 printf("5 is odd!\n");
}

cpp

#define ODD(x) ((x) % 2 != 0)
#define WEIRD(x) x % 2 != 0

ODD(5 + 1);

WEIRD(5 + 1);

((5 + 1) % 2 != 0);

5 + 1 % 2 != 0;

cpp

STYLE
TIP

CSE 333, Winter 2026L06: Linking, File I/O

Macro Alternatives

❖ const: a type qualifier that indicates that the data is
read only

▪ Compile-time construct that will generate a compiler error or
warning if violated

▪ Much more heavily used in C++ and we’ll return to the nuances
here later on in the course (pointers are weird!)

▪ Can replace constant macro with a const variable

❖ inline: keyword used in front of a function definition to
suggest to the compiler to optimize the function call away

▪ Mostly beyond the scope of this course

▪ Can replace macro with arguments with (static) inline
functions

5

CSE 333, Winter 2026L06: Linking, File I/O

Preprocessor Tricks: Defining Tokens

❖ Besides #defines in the code, preprocessor values can
be given as part of the gcc command:

❖ assert can be controlled the same way – defining NDEBUG
causes assert to expand to “empty”

▪ It’s a macro – see assert.h

6

$ gcc -Wall -g -DTRACE -o ifdef ifdef.c

$ gcc -Wall -g -DNDEBUG -o faster useassert.c

CSE 333, Winter 2026L06: Linking, File I/O

Preprocessor Tricks: Conditional
Compilation
❖ You can change what gets compiled

▪ In this example, #define TRACE before #ifdef to include
debug printfs in compiled code

7

#ifdef TRACE
#define ENTER(f) printf("Entering %s\n", f)
#define EXIT(f) printf("Exiting %s\n", f)
#else
#define ENTER(f)
#define EXIT(f)
#endif

// print n
void Pr(int n) {
 ENTER("Pr");
 printf("\n = %d\n", n);
 EXIT("Pr");
}

ifdef.c

CSE 333, Winter 2026L06: Linking, File I/O

A. Output "333"

B. Output "334"

C. Compiler message
 about EVEN

D. Compiler message
 about BAZ

E. We’re lost…

8

What will happen when we try to compile and run?

$ gcc -Wall –DFOO -DBAR -o condcomp condcomp.c
$./condcomp

#ifdef FOO
#define EVEN(x) !(x%2)
#endif
#ifndef DBAR
#define BAZ 333
#endif

int main(int argc, char** argv) {
 int i = EVEN(42) + BAZ;
 printf("%d\n",i);
 return EXIT_SUCCESS;
}

pollev.com/cse333j

CSE 333, Winter 2026L06: Linking, File I/O

Lecture Outline (1/2)

❖ Visibility of Symbols

▪ extern, static

❖ File I/O with the C standard library

9

CSE 333, Winter 2026L06: Linking, File I/O

Namespace Problem

❖ If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

▪ Yes, if you use external linkage

• The name “counter” refers to the same variable in both files

• The variable is defined in one file and declared in the other(s)

• When the program is linked, the symbol resolves to one location

▪ No, if you use internal linkage

• The name “counter” refers to a different variable in each file

• The variable must be defined in each file

• When the program is linked, the symbols resolve to two locations

10

CSE 333, Winter 2026L06: Linking, File I/O

External Linkage

❖ extern makes a declaration of something externally-
visible
▪ Works slightly differently for variables and functions…

11

#include <stdio.h>
#include <stdlib.h>

// A global variable, defined and
// initialized here in foo.c.
// It has external linkage by
// default.
int counter = 1;

int main(int argc, char** argv) {
 printf("%d\n", counter);
 Bar();
 printf("%d\n", counter);
 return EXIT_SUCCESS;
}

foo.c

#include <stdio.h>

// "counter" is defined and
// initialized in foo.c.
// Here, we declare it, and
// specify external linkage
// by using the extern specifier.
extern int counter;

void Bar() {
 counter++;
 printf("(Bar): counter = %d\n",
 counter);
}

bar.c

CSE 333, Winter 2026L06: Linking, File I/O

Internal Linkage

❖ static (in the global context) restricts a definition to
visibility within that file

12

#include <stdio.h>
#include <stdlib.h>

// A global variable, defined and
// initialized here in foo.c.
// We force internal linkage by
// using the static specifier.
static int counter = 1;

int main(int argc, char** argv) {
 printf("%d\n", counter);
 Bar();
 printf("%d\n", counter);
 return EXIT_SUCCESS;
}

foo.c

#include <stdio.h>

// A global variable, defined and
// initialized here in bar.c.
// We force internal linkage by
// using the static specifier.
static int counter = 100;

void Bar() {
 counter++;
 printf("(Bar): counter = %d\n",
 counter);
}

bar.c

CSE 333, Winter 2026L06: Linking, File I/O

Function Visibility

13

#include <stdio.h>
#include <stdlib.h>

extern int Bar(int x); // "extern" is default, usually omit

int main(int argc, char** argv) {
 printf("%d\n", Bar(5));
 return EXIT_SUCCESS;
}main.c

// By using the static specifier, we are indicating
// that Foo() should have internal linkage. Other
// .c files cannot see or invoke Foo().
static int Foo(int x) {
 return x*3 + 1;
}

// Bar is "extern" by default. Thus, other .c files
// could declare our Bar() and invoke it.
int Bar(int x) {
 return 2*foo(x);
}bar.c

CSE 333, Winter 2026L06: Linking, File I/O

Linkage Issues

❖ Every global (variables and functions) is extern by
default

▪ Unless you add the static specifier, if some other module uses
the same name, you’ll end up with a collision!

• Best case: compiler (or linker) error

• Worst case: stomp all over each other

❖ It’s good practice to:

▪ Use static to “defend” your globals

• Hide your private stuff!

▪ Place external declarations in a module’s header file

• Header is the public specification

14

STYLE
TIP

CSE 333, Winter 2026L06: Linking, File I/O

Static Confusion…

❖ C has a different use for the word “static”: to create a
persistent local variable

▪ The storage for that variable is allocated when the program loads,
in either the .data or .bss segment

▪ Retains its value across multiple function invocations

15

void Foo() {
 static int count = 1;
 printf(“Foo has been called %d times\n", count++);
}

void Bar() {
 int count = 1;
 printf(“Bar has been called %d times\n", count++);
}

int main(int argc, char** argv) {
 Foo(); Foo(); Bar(); Bar(); return EXIT_SUCCESS;
}static_extent.c

CSE 333, Winter 2026L06: Linking, File I/O

Additional C Topics

❖ Teach yourself!

▪ man pages are your friend!

▪ String library functions in the C standard library

• #include <string.h>

– strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), …

• #include <stdlib.h> or #include <stdio.h>

– atoi(), atof(), sprint(), sscanf()

▪ How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

▪ unions and what they are good for

▪ enums and what they are good for

▪ Pre- and post-increment/decrement

▪ Harder: the meaning of the “volatile” storage class

16

CSE 333, Winter 2026L06: Linking, File I/O

Lecture Outline (2/2)

❖ Visibility of Symbols

▪ extern, static

❖ File I/O with the C standard library

17

This is essential material for the next part of the project (HW2)!

CSE 333, Winter 2026L06: Linking, File I/O

File I/O

❖ We’ll start by using C’s standard library

▪ These functions are part of glibc on Linux

▪ They are implemented using Linux system calls (POSIX)

❖ C’s stdio defines the notion of a stream

▪ A sequence of characters that flows to and from a device

• Can be either text or binary; Linux does not distinguish

▪ Is buffered by default; libc reads ahead of your program

▪ Three streams provided by default: stdin, stdout, stderr

• You can open additional streams to read and write to files

▪ C streams are manipulated with a FILE* pointer, which is
defined in stdio.h

18

CSE 333, Winter 2026L06: Linking, File I/O

C Stream Functions (1/2)

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);

• Closes the specified stream (and file)

▪ int fprintf(stream, format, ...);

• Writes a formatted C string

– printf(...); is equivalent to fprintf(stdout, ...);

▪ int fscanf(stream, format, ...);

• Reads data and stores data matching the format string

19

FILE* fopen(filename, mode);

int fclose(stream);

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);

CSE 333, Winter 2026L06: Linking, File I/O

C Stream Functions (2/2)

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);

• Closes the specified stream (and file)

▪ int fprintf(stream, format, ...);

• Writes an array of count elements of size bytes from ptr to stream

▪ int fscanf(stream, format, ...);

• Reads an array of count elements of size bytes from stream to ptr

20

FILE* fopen(filename, mode);

int fclose(stream);

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);

CSE 333, Winter 2026L06: Linking, File I/O

C Stream Error Checking/Handling

❖ Some error functions (complete list in stdio.h):

▪ int ferror(stream);

• Checks if the error indicator associated with the specified stream is
set

▪ void clearerr(stream);

• Resets error and EOF indicators for the specified stream

▪ void perror(message);

• Prints message followed by an error message related to errno to
stderr

21

int ferror(stream);

int clearerr(stream);

void perror(message);

CSE 333, Winter 2026L06: Linking, File I/O

C Streams Example (1/3)

22

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
 FILE* fin;
 FILE* fout;
 char readbuf[READBUFSIZE];
 size_t readlen;

 if (argc != 3) {
 fprintf(stderr, "usage: ./cp_example infile outfile\n");
 return EXIT_FAILURE; // defined in stdlib.h
 }

 // Open the input file
 fin = fopen(argv[1], "rb"); // "rb" -> read, binary mode
 if (fin == NULL) {
 perror("fopen for read failed");
 return EXIT_FAILURE;
 }
 ... // next slide's code

cp_example.c

CSE 333, Winter 2026L06: Linking, File I/O

C Streams Example (2/3)

23

int main(int argc, char** argv) {

 ... // previous slide's code

 // Open the output file
 fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
 if (fout == NULL) {
 perror("fopen for write failed");
 fclose(fin);
 return EXIT_FAILURE;
 }

 // Read from the file, write to fout
 while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
 // Test to see if we encountered an error while reading
 if (ferror(fin)) {
 perror("fread failed");
 fclose(fin);
 fclose(fout);
 return EXIT_FAILURE;
 }
 ... // next slide’s code
}

cp_example.c

CSE 333, Winter 2026L06: Linking, File I/O

C Streams Example (3/3)

24

int main(int argc, char** argv) {

 ... // two slides ago's code

 ... // previous slide's code

 if (fwrite(readbuf, 1, readlen, fout) < readlen) {
 perror("fwrite failed");
 fclose(fin);
 fclose(fout);
 return EXIT_FAILURE;
 }
 }

 fclose(fin);
 fclose(fout);

 return EXIT_SUCCESS;
}

cp_example.c

CSE 333, Winter 2026L06: Linking, File I/O

Extra Exercise #1

❖ Modify the linked list code from Lecture 4 Extra
Exercise #3

▪ Add static declarations to any internal functions you implemented
in linkedlist.h

▪ Add a header guard to the header file

25

CSE 333, Winter 2026L06: Linking, File I/O

Extra Exercise #2

❖ Write a program that:

▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a uint32_t

▪ Builds an array of the parsed uint32_t’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about
getline, sscanf, realloc,
and qsort

26

bash$ cat in.txt
1213
3231
000005
52
bash$./extra1 in.txt
5
52
1213
3231
bash$

CSE 333, Winter 2026L06: Linking, File I/O

Extra Exercise #3

❖ Write a program that:

▪ Loops forever; in each loop:

• Prompt the user to
input a filename

• Reads a filename
from stdin

• Opens and reads
the file

• Prints its contents
to stdout in the format shown:

❖ Hints:

▪ Use man to read about fgets

▪ Or, if you’re more courageous, try man 3 readline to learn about
libreadline.a and Google to learn how to link to it

27

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5
00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53
00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d
00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00
00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09
00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c
00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68
00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00
00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88
00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a
000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b
... etc ...

	Slide 1: About where are you on Homework 1?
	Slide 2: Systems Programming Linking, File I/O
	Slide 3: Relevant Course Information
	Slide 4: Preprocessor Tricks: Macros
	Slide 5: Macro Alternatives
	Slide 6: Preprocessor Tricks: Defining Tokens
	Slide 7: Preprocessor Tricks: Conditional Compilation
	Slide 8: What will happen when we try to compile and run?
	Slide 9: Lecture Outline (1/2)
	Slide 10: Namespace Problem
	Slide 11: External Linkage
	Slide 12: Internal Linkage
	Slide 13: Function Visibility
	Slide 14: Linkage Issues
	Slide 15: Static Confusion…
	Slide 16: Additional C Topics
	Slide 17: Lecture Outline (2/2)
	Slide 18: File I/O
	Slide 19: C Stream Functions (1/2)
	Slide 20: C Stream Functions (2/2)
	Slide 21: C Stream Error Checking/Handling
	Slide 22: C Streams Example (1/3)
	Slide 23: C Streams Example (2/3)
	Slide 24: C Streams Example (3/3)
	Slide 25: Extra Exercise #1
	Slide 26: Extra Exercise #2
	Slide 27: Extra Exercise #3

