WA UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333j

About where are you on Homework 1?

A.
B. Working on Part A (LinkedList)
C. Working on Part B (HashTable)
D. Finished or about finished
E. Prefer not to say

Notes:

v" Don’t wait — Part B is longer and harder than Part A

v" OHs get crowded — come prepared to describe (1) your incorrect
behavior, (2) what you think the issue is, and (3) what you’ve tried

"

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON LO6: Linking, File 1/0

Systems Programming

Linking, File I/O

Instructors:
Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Relevant Course Information

» Exercise 6 due Wednesday (1/21)
= Skipping Exercise 5 this quarter due to scheduling/timing

» Homework 1 due next Thursday (1/22)

= Watch that HashTab le doesn’t violate the modularity of
LinkedList (i.e., respect the interfaces!)

= Watch for pointers to local (stack) variables
= Use gdb and valgrind and draw memory diagrams!
= Please leave “STEP #” markers for graders!

= Gradescope “lateness” based on when we run the upload script;
submission time (and late days) based on commit time on tag
hwl-submit (see git_tag_timestamp.txt)

= Light grading of your git commit history

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

o S E
Preprocessor Tricks: Macros
<« YOUu can Pass arguments to macros
[#define ODD(x) ((x) % 2 != 0)) [)
. cpp|. .
void Foo() { 5 void Foo() {
it (obD(5)) it (((5) % 2 1= 0))
printf("5 is odd!\n"); printf ("5 is odd!\n");
} \} J
+ Beware of operator precedence issues!
= Use parentheses
[#define ODD(x) ((x) % 2 != @) | [)
#define WEIRD(x) x % 2 1= 0
cpp
ODD(5 + 1); > ((5 + 1) %2 1=0);
|WEIRD(5 + 1); J |5+ 1% 2 !=0;)

+ Discouraged in favor of inline functions (Google)

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Macro Alternatives

+» const: atype qualifier that indicates that the data is
read only

" Compile-time construct that will generate a compiler error or
warning if violated

" Much more heavily used in C++ and we’ll return to the nuances
here later on in the course (pointers are weird!)

" Canreplace constant macro with a const variable

+» 1nlLine: keyword used in front of a function definition to
suggest to the compiler to optimize the function call away
" Mostly beyond the scope of this course

= Can replace macro with arguments with (static)inline
functions

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Preprocessor Tricks: Defining Tokens

» Besides #def1nesin the code, preprocessor values can
be given as part of the gcc command:

$ gcc -Wall -g -DTRACE -o 1ifdef 1ifdef.c

» assert can be controlled the same way — defining NDEBUG
causes assert to expand to “empty”

" |t's amacro—see assert.h

$ gcc -Wall -g -DNDEBUG -o faster useassert.c

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Preprocessor Tricks: Conditional

Compilation

% You can change what gets compiled

" |n this example, #define TRACE before #1fdef to include
debug printfsin compiled code

(#ifdef TRACE

#define ENTER(f) printf("Entering %s\n", f)
#tdefine EXIT(f) printf("Exiting %s\n", f)
#telse

#define ENTER(T)

#define EXIT(f)

#tendif

// print n
void Pr(int n) {
ENTER("Pr");
printf("\n = %d\n", n);
EXIT("Pr");
s y

ifdef.c

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

0 PO" EVGI‘YWhere pollev.com/cse333j

What will happen when we try to compile and run?

$ gcc -Wall -DFO0 -DBAR -o condcomp condcomp.c
$./condcomp

A. (#ifdef FOO R
B. Out £ "334" #define EVEN(x) ! (x%2)
. utpu #tendif
#ifndef DBAR

C. Compiler message #define BAZ 333

about EVEN rendit

. int main(int argc, char*x argv) {
D. Compiler message int i = EVEN(42) + BAZ;
printf("%d\n",q);

abOUt BAZ return EXIT_SUCCESS;

E. We're lost... \J J

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Lecture Outline (1/2)

+ Visibility of Symbols
= extern, static
+ File I/0 with the C standard library

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Namespace Problem

+ If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

" Yes, if you use external linkage
- The name “counter” refers to the same variable in both files
- The variable is defined in one file and declared in the other(s)
- When the program is linked, the symbol resolves to one location

"= No, if you use internal linkage
- The name “counter” refers to a different variable in each file
- The variable must be defined in each file
- When the program is linked, the symbols resolve to two locations

10

W UNIVERSITY of WASHINGTON LO6: Linking, File 1/0

External Linkage

+» extern makes a declaration of something externally-

visible

= Works slightly differently for variables and functions...

CSE 333, Winter 2026

foo.c

11

(#include <stdio.h> Y (#include <stdio.h> h
#include <stdlib.h>
// "counter" is defined and
// A global variable, defined and // initialized in foo.c.
// initialized here in foo.c. // Here, we declare i1t, and
// It has external linkage by // specify external linkage
// default. // by using the extern specifier.
int counter = 1; extern int counter;
int main(int argc, char*x argv) { void Bar() {
printf("%d\n", counter); counter++;
Bar () ; printf("(Bar): counter = %d\n",
printf("%d\n", counter); counter) ;
return EXIT_SUCCESS; \t y
& J bar.c

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON

Internal Linkage

LO6: Linking, File I/O

+» static (in the global context) restricts a definition to

visibility within that file

(#include <stdio.h>
#include <stdlib.h>

// A global variable, defined and
// initialized here in foo.c.

// We force internal linkage by
// using the static specifier.
static int counter = 1;

int main(int argc, char*x argv) {
printf("%d\n", counter);
Bar () ;
printf("%d\n", counter);
return EXIT_SUCCESS;

(#include <stdio.h>

// A global variable, defined and
// initialized here in bar.c.

// We force internal linkage by
// using the static specifier.
static int counter = 100;

void Bar() {
counter++;
printf("(Bar): counter = %d\n",
counter) ;

foo.c

bar.c

12

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Function Visibility

(// By using the static specifier, we are indicating b
// that Foo() should have internal linkage. Other
// .c files cannot see or invoke Foo().
static int Foo(int x) {
return x*3 + 1;
}
// Bar i1s "extern'" by default. Thus, other .c files
// could declare our Bar() and invoke 1it.
int Bar(int x) {
return 2*xfoo(x) ;
bar.c| }
L J
(#include <stdio.h> R
#include <stdlib.h>
extern int Bar(int x); // "extern" is default, usually omit
int main(int argc, char*x argv) {
printf("%d\n", Bar(5));
return EXIT_SUCCESS;
main.c{ }

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Linkage Issues

+ Every global (variables and functions) is extern by
default

" Unless you add the static specifier, if some other module uses
the same name, you’ll end up with a collision!

- Best case: compiler (or linker) error

- Worst case: stomp all over each other

+ It’s good practice to:
= Use static to “defend” your globals
- Hide your private stuff!

= Place external declarations in a module’s header file
- Header is the public specification

14

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Static Confusion...

+» C has a different use for the word “static”: tocreatea
persistent local variable

" The storage for that variable is allocated when the program loads,
in either the .data or .bss segment

= Retains its value across multiple function invocations

/;oid Foo() {)
static int count = 1;
printf(“Foo has been called %d times\n", count++);

}

void Bar() {
int count = 1;
printf(“Bar has been called %d times\n", count++);

}

int main(int argc, charxx argv) {
Foo(); Foo(); Bar(); Bar(); return EXIT_SUCCESS;

static_extent.c \)

15

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Additional C Topics

+ Teach yourself!
" man pages are your friend!

= String library functions in the C standard library

- #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...

« #include <stdlib.h>or #include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

" How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

" unions and what they are good for

= enums and what they are good for

" Pre- and post-increment/decrement

= Harder: the meaning of the “volati le” storage class

16

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

Lecture Outline (2/2)

+ Visibility of Symbols
" extern, static
+ File 1/O with the C standard library

[This is essential material for the next part of the project (HW2)!

17

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

File 1/O

+» We'll start by using C’s standard library
= These functions are part of glibc on Linux
" They are implemented using Linux system calls (POSIX)

+» C's stdio defines the notion of a stream
= A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish
= |s buffered by default; L1bc reads ahead of your program

" Three streams provided by default: stdin, stdout, stderr
« You can open additional streams to read and write to files

= Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

18

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Stream Functions (1/2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen(filename, mode) ;]

- Opens a stream to the specified file in specified file access mode

-[1nt fclose(stream);]

« Closes the specified stream (and file)

-[1nt fprintf(stream, format, ...);]

- Writes a formatted C string
- printf(...);isequivalentto fprintf(stdout, ...);

-[1nt fscanf(stream, format, ...);]

- Reads data and stores data matching the format string

19

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Stream Functions (2/2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen(filename, mode) ;]

- Opens a stream to the specified file in specified file access mode

-[1nt fclose(stream);]

« Closes the specified stream (and file)

-[size_t fwrite(ptr, size, count, stream);]

- Writes an array of count elements of size bytes from ptr to stream

-[size_t fread(ptr, size, count, stream);]

- Reads an array of count elements of size bytes from stream to ptr

20

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Stream Error Checking/Handling

% Some error functions (complete list in stdio.h):

-[1nt ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

-[1nt clearerr(stream);]

- Resets error and EOF indicators for the specified stream

-[void perror(message);]

- Prints message followed by an error message related to errno to
stderr

21

C Streams Example (1/3)

cp_example.c

7

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char*x argv) {
FILEx fin;
FILEx fout;
char readbuf[READBUFSIZE];
size_t readlen;

it (arge !'= 3) {
fprintf(stderr, "usage: ./cp_example 1infile outfile\n");
return EXIT_FAILURE; // defined in stdlib.h

}

// Open the input file
fin = fopen(argv[1l], "rb"); // "rb" -> read, binary mode
if (fin == NULL) {
perror ("fopen for read failed");
return EXIT_FAILURE;
}

// next slide's code

N\

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

22

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Streams Example (2/3)

(int main(int argc, charxx argv) {

cp_example.c

\

// previous slide's code

// Open the output file
fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
if (fout == NULL) {

perror ("fopen for write failed");

fclose(fin);

return EXIT_FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
// Test to see i1f we encountered an error while reading
it (ferror(fin)) {
perror ("fread failed");
fclose(fin);
fclose(fout);
return EXIT_FAILURE;

// next slide’s code

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE 333, Winter 2026

C Streams Example (3/3)

(e main(int argc, charxx argv) {

cp_example.c

\

// two slides ago's code
// previous slide's code

if (fwrite(readbuf, 1, readlen, fout) < readlen) {
perror ("fwrite failed");
fclose(fin);
fclose(fout);
return EXIT_FAILURE;

}
}

fclose(fin);
fclose(fout);

return EXIT_SUCCESS;

24

W UNIVERSITY of WASHINGTON LO6: Linking, File /0

Extra Exercise #1

» Modify the linked list code from Lecture 4 Extra
Exercise #3

= Add static declarations to any internal functions you implemented
in Linkedlist.h

= Add a header guard to the header file

CSE 333, Winter 2026

25

W UNIVERSITY of WASHINGTON LO6: Linking, File 1/0

CSE 333, Winter 2026

Extra Exercise #2

\/
0’0

\/
0’0

Write a program that:

= Uses argc/argyv to receive the name of a text file

= Reads the contents of the file a line at a time

= Parses each line, converting text intoauint32_t

= Builds an array of the parsed uint32_t’s
= Sorts the array
® Prints the sorted array to stdout

Hint: use man to read about
getline, sscanf, reallogc,
and gqsort

bash$ cat in.txt
1213

3231

OOOOOS5

52

bash$./extral in.txt
5

52

1213

3231

bashs$

26

W UNIVERSITY of WASHINGTON

Extra Exercise #3

+» Write a program that:

LO6: Linking, File I/O

" |Loops forever; in each loop:

- Prompt the user to
input a filename

Reads a filename
from stdin

- Opens and reads
the file

Prints its contents
to stdout in the format shown:

00000000
00000010
00000020
00000030
00000040
00000050

00000060
010JOIOIOION4C;
010JOJ0I0I0R10;
000060690
O00O000an

. etc ...

= Use man to read about fgets

= QOr, if you’re more courageous, try man 3 readline tolearn about
libreadline. aand Google to learn how to link to it

CSE 333, Winter 2026

	Slide 1: About where are you on Homework 1?
	Slide 2: Systems Programming Linking, File I/O
	Slide 3: Relevant Course Information
	Slide 4: Preprocessor Tricks: Macros
	Slide 5: Macro Alternatives
	Slide 6: Preprocessor Tricks: Defining Tokens
	Slide 7: Preprocessor Tricks: Conditional Compilation
	Slide 8: What will happen when we try to compile and run?
	Slide 9: Lecture Outline (1/2)
	Slide 10: Namespace Problem
	Slide 11: External Linkage
	Slide 12: Internal Linkage
	Slide 13: Function Visibility
	Slide 14: Linkage Issues
	Slide 15: Static Confusion…
	Slide 16: Additional C Topics
	Slide 17: Lecture Outline (2/2)
	Slide 18: File I/O
	Slide 19: C Stream Functions (1/2)
	Slide 20: C Stream Functions (2/2)
	Slide 21: C Stream Error Checking/Handling
	Slide 22: C Streams Example (1/3)
	Slide 23: C Streams Example (2/3)
	Slide 24: C Streams Example (3/3)
	Slide 25: Extra Exercise #1
	Slide 26: Extra Exercise #2
	Slide 27: Extra Exercise #3

